

fotovoltaicaufsc

M

Florianôpolis – SC – Brasil • 09 de Novembro de 2018

Florianôpolis – SC – Brasil • 09 de Novembro de 2018

Photovoltaics: Technology and Progress Amanhã é Hoje!

Lawrence L. Kazmerski NREL and University of Colorado Boulder Colorado, USA

fotovoltaicaufsc

Florianôpolis – SC – Brasil • 09 de Novembro de 2018

Objectives

fotovoltaicaufsc

- Explore the history of this PV technology
- Establish where we are today (markets, technology)
- Examine where we expect to be in the future

World PV Shipments 2006-2017: Where we are

94 Gigawatts in I-year!

Power?

How many homes in US? 1,310,000 homes

India? 29,500,000 homes

Florianôpolis – SC – Brasil • 09 de Novembro de 2018

Objectives

- Explore the history of this PV technology
- Establish where we are today

fotovoltaicauf sc

• Examine where we expect to be in the future

Driving force for technology has been, is, and will continue to be *innovation*

Inovação?

Inovação: aplicação de idéias originais ou novas, que levam a soluções que criam *valor*.

A semente da inovação é a *criatividade*.

Inovação leva a mudanças significativas e positivas.

A visão é a força motriz para a inovação.

"The sun ... our greatest energy source!" Charles Proteus Steinmetz [1908] "I put my money on the sun and solar energy. What a source of power!" Thomas Alva Edison [1903]

"The sun is the spring that drives all ... A better way to obtain power would be to avail ourselves of the sun's rays." Nikola Tesla [1900]

Os inovadores e visionários

"The sun ... our greatest energy source!" Charles Proteus Steinmetz [1908] "I put my money on the sun and solar energy. What a source of power!" Thomas Alva Edison [1903]

Invoice Marking dynamos for r	ера	air	
1. 2 hours labor 2. Knowing where to mark	\$ \$	10. 9,990.	
Total	\$	10,000.	

"The sun is the spring that drives all ... A better way to obtain power would be to avail ourselves of the sun's rays." Nikola Tesla [1900]

Os inovadores e visionários

I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal run out before we tackle that.

Os inovadores e visionários

Xcel to Replace 2 Colorado Coal Units With Renewables...

On Monday, Xcel won preliminary approval for its coal plant retirement plan. The Colorado Public Utility Commission voted unanimously to allow for the early closure of coal-fired units 1 and 2 at the Comanche Generating Station in Pueblo County....

Read more

www.greentechmedia.c.Many associate energy with oil, and oil with Saudi Arabia...

"In every walk with nature one receives far more than he seeks." - John Muir

tamos mudando!

Chernobyl Goes Solar With New 1 Megawatt Installation At ...

Chernobyl has been reclaimed to some degree this week as a long-awaited plan to install solar at the site of one of the worst nuclear plisasters in distory havbee prove a

Repower Amer Campaign (Vid

George Spyros

Home

News Home

BREAK

Suffc

In Ha

October 13.

Choro th

Busin March

UPGRA

YOUR

SOLAR

POWER

GET A

CL

HOME ABOUT EVERGUARD SOLAR BENEFITS HOW SOLAR WORKS SOLAR INFORMATION CONTACT EVERGUARD

EverGuard Solar Energy Specialists

Photovoltaic Solutions for Residential • Commercial • Schools • Government

global warming. New Mexico with one of the greatest solar resources Everguard Solar is a New Mexico based green energy company speci

use of colar energy reduces our dependence on foreign oil, reduc pollution, and our urgent need to address the issues of climate change global warming. New Mexico with one of the greatest solar resources

entire Unites States, has been referred to as the "Saudi Arabia of Solar."

Everguard installs systems that may last 40 years with 25 year performance warranties on your roof top Building Integrated PhotoVoltaic - BIPV. Your roof is important and an experienced Everguard Roofing c assure your roof will last as long as your solar system.

The environmental benefits of PV are undeniable and proven. The economics, performance and quality of systems are proven as well - here in New Mexico.

A number of tax credits, utility incentives and other programs make solar PV a sensible solution.

State-of-the-art high efficiency products produced by leading companies such as General Electric, PV Deverad Suppy Roy Cabett Conve Support and RD are installed by Everavord

Repower Amer Campaign (Vid

arch..

HOME ABOUT EVERGUARD SOLAR BENEFITS HOW SOLAR WORKS SOLAR INFORMATION CONTACT EVERGUARD

EverGuard Solar Energy Specialists

Photovoltaic Solutions for Residential • Commercial • Schools • Government

ê 🛤

International GreenTechnology Institute, Inc

EMPOWERING ENTREPRENEURS TO REBUILD NEIGHBORHOODS

me | About Us | Vision | Management | Board of Directors | News | Downloads | Contact

The Saudi Arabia of Green Power

Southern California Desert: The Saudi Arabia of Green Power

Exporting solar, wind, biofuel & geothermal power to the counties of LA, Orange & San Diego to meet he RPS 33% by 2020 Climate Change Challenge.

Read all about it in the following Powerpoint presentation:

- Home
 Projects
 Events
 References
 - Affiliates
 - Online Learning

green energy company speci of photovoltaic (PV) system letion, Everguer eatest solar resources

unat is a maj w Mexico.

endence on foreign oil, reduc the issues of climate change the greatest solar resources

e warranties on your roof top rienced Everguard Roofing c

, performance and quality o

a sensible solution.

ch as General Electric, PV

Repower Amer Campaign (Vid

me I About Us I Vision I Management I Board of Directors I

The Saudi Arabia of Green Power

Southern California Desert: The Saudi Arabia of Green Power Exporting solar, wind, biofuel & geothermal power to the counties of LA, Orange & he RPS 33% by 2020 Climate Change Challenge.

Read all about it in the following Powerpoint presentation:

About everguard Solar Benefits, How solar works, solar industry Booming: California Solar Industry Booming: Report Finds State's Solar Capacity Has Doubled Over Past Five Years

> "California can become the Saudi Arabia of the sun if it continues to get behind big, successful solar programs," report co-author Michelle Kinman told the

irst Posted: 11/09/11 02:38 PM ET Updated: 11/10/11 12:53 PM ET

React >	Amazing	Inspiring	Funny	Scary	Hot	Crazy	Important	Weird

Follow > Green Energy, Solar Energy, Solyndra, California Green Energy, California Solar Energy Report, California Solar Industry Booming, California Solar Initiative, Environment California, Ca Green Energy, Ca Solar Industry, California Renewable Energy, California Solar, California Solar Industry, Rooftop Solar Panels, Solar Energy California, San Francisco News

SHARE THIS STORY

According to a new report, California's solar indus is absolutely booming.

Australia

Australia's total

plants.

Video

19

UPGR

arch...

8

omel Abo

The S

Southern Ca

Exporting sola

he RPS 33%

Read all about

ECO Aquecedor solar vácuo

Somos importadores. Consulte-nos. Temos o Con melhor preco para revenda. www.ecoaquecedores.com.br

Energia Elétrica Reducão de Custos Mercado Cativo e Livre Agente

CCEE (11) 2084-9100 www.engeletrica.com.br

Idéias para Novo Negócio?

Faça e venda produto Subtitle: Wholly personalizado Confira esta nova e lucrativa We have another idéia dicadenegocio.com.br/ Warren McLaren

Ecoforce - Energia Solar

Soluções Práticas & period, Australia Sustentáveis 40% of the cou Iluminação Solar e Placas Solares

www.ecoforce.com.br Anúncios Google

Informática Materiais Mecânica Meio ambiente Nanotecn Energia Espaço Smart TV 32" LED Full HD Philips SubmarinC no boleto ou Por débito online Energia Energia selar not Brasil pode ser vantjosa a partir de 2013 Brasil - Arábia Saudita da energia solar

Arley Reis - 02/10

Pesquisadores da Universidade Federal de Santa Catarina mostraram que, entre 2012 e 2013, algumas regiões do Brasil já poderão ter preços equivalentes de energia fotovoltaica e energia convencional.

Programa Solar Brasileiro

Os dados são resultado de simulações de cenários para um eventual Programa Solar Brasileiro. As simulações identificam, entre diversos itens, o custo total do programa, o impacto tarifário que terá através da diluição dos custos aos consumidores finais e o momento em que o preço da energia fotovoltaica e da energia convencional será o mesmo para o usuário final.

De acordo com o coordenador dos trabalhos, o professor Ricardo Rüther, foram realizadas simulações para diferentes portes de programa,

Telhados solares poderão gerar energia elétrica com custo similar ao da energia convencional a partir de 2013. [Imagem: Labsolar/UFSC]

Caixa Plástica sem Moldes

Projeto e Confecção de Gabinetes de Plástico para Painel Elétrico! pecasplasticas.com

Aquecedor Solar p/ Banho

Banho Quente c/ Aquecimento Solar. Alta

Energy ifornia In.

solar indus

ıg:

city

ALL	DESIGN	TEC
Den		

Read all abour

וור	NOVACIÓNA	Downloads/ White Papers
COMPAN	Tudo o que acontece na fronteira	Blog
TEC	Principal Eletrônica	Financial Content
120	Principal Eletronica i	News
	Anúncios Google	Bioenergy
ner	Aquecedor Solar Universol	Energy efficiency
	Somente para revenda	Energy infrastructure
	1.050,00. Acima de 10 unidades.	Energy storage including Fuel cells
	www.universoll.com.br	Geothermal
	solar vácuo	Green building
Con	Somos importadores. Consulte-nos. Temos o	Other marine energy and hydropower
	revenda.	Photovoltaics (PV)
	www.ecoaquecedores.com.br	Policy, investment and markets
	Redução	Solar electricity
_	Cativo e Livre Agente	Solar heating and cooling
ustralia	CCEE (11) 2084-9100	Wave and tidal energy
ustialia	Idéias para Novo	Wind power
e: Wholly	Negócio? Faça e venda produto	World Future Energy Summit
	esta nova e lucrativa	Events & Training
Melaron	idéia dicadenegocio.com.br/	Renewable Energy Focus
NicLaren	Ecoforce - Energia	
Australia	Solar Soluções Práticas & Sustentáveis	focus
the cot	Placas Solares	Sign up now for your FREE digital edition
	Anúncios Google	AdChoices 🕞

. . .

Feature

Webinars

Full version: India's solar sunrise - The Saudi Arabia of Solar!

02 May 2012 Darshan Goswami

Comment: Solar Energy has the potential to re-energise India's economy by creating millions of new jobs, achieve energy independence, reduce the trade deficit and propel India forward as a 'green nation'. In short, solar offers too many benefits for India to ignore or delay its development.

The views and opinions expressed in this article are solely those of the writer and are not intended to represent the views or policies of the United States Department of Energy.

India is one of the sun's most favoured nations, blessed with about 5000 TWh of solar insoluation every year. India should tap this vast resource to satisfy its growing energy demand - and time is of the essence. Even if a tenth of this potential was utilised, it could mark the end of India's power problems - using the country's deserts and farm land.

Solar India's eco

India could lead the world by embracing the power of the sun, if smart business models and favourable policies are developed and implemented nationwide as quickly as possible.

Need backing

Despite the worldwide recession, the solar photovoltaic (PV) industry has demonstrated unprecedented growth over the past years, with increased demand for solar power attracting more and more players into the market. The price of solar panels fell 47% in 2011, according to Bloomberg. This has made the business case for solar more compelling because solar PV has, in some parts of the world, already reached grid parity, and it will soon be below the US\$1/W cost target for most of the world sometime this year. This is making solar technology more competitive with traditional energy sources.

Share

Top 5

1. End-of-**PV** panels

2. Five rea

3. Wind tu products

4. DC mic generatio

			Webinars	
PLLE	ehi	NOVAGÃO JA	Downloads/ White Papers	Fe
	DISCOVERY COMPA	Tudo o que acontece na fronteira	Blog	1.000
I DES		Bringinal Eletrônica	Financial Content	Fu
		Principal Eletronica	News	SL
onow	r Amo	Anúncios Google	Bioenergy	021
epowe		Aquecedor Solar Universol	Energy efficiency	Dar
ampai	gn (Vi	Somente para revenda	Energy infrastructure	Co
Georg	e Spyros	1.050,00. Acima de 10 unidades.	Energy storage including Fuel cells	cre
SPACE	TECH	ENVIRONMENT HEALTH	LIFE PHYSICS	&М¹⁰ ер
ome Tech	n Environi	nent News		di
limalau		d herema the Coud		to to
imalay	as cou	d become the Saudi	Arabia of sola	Du
17:33 18 Oc	ctober 2011	by Chelsea Whyte		di
Magazine is	sue 2835. S	ubscribe and save the Energy and Euels Topic Guid	de	Jic
or on man		and Entergy and I dolo ropio out		
ink of color				es
INK OF SOIAI	arrave and	wou'll probably picture papels und	lor blistoring dosort boot	es es es
out we may	arrays and be able to c	you'll probably picture panels und et more energy from solar panels	ler blistering desert heat on snow-capped	es es en en ric
out we may ountains.	arrays and be able to g	you'll probably picture panels und et more energy from solar panels	ler blistering desert heat on snow-capped	es an ic ic ar
out we may ountain <mark>s</mark> .	arrays and be able to g	you'll probably picture panels und et more energy from solar panels	ler blistering desert heat on snow-capped	e es an ic e ar SS ola
out we may ountains. otaro Kawaj	arrays and be able to g iri at the Ma	you'll probably picture panels und et more energy from solar panels ssachusetts Institute of Technolog	ler blistering desert heat on snow-capped gy mapped solar	es es en en ric e ar SS ola

that some of the highest levels of sunlight can be found in the Himalayas and the

Andes: at altitude, less light is lost to the atmosphere.

Feature

Full version: India's solar sunrise - The Saudi Arabia of Solar!

02 May 2012 Darshan Goswami

Comment: Solar Energy has the potential o re-energise India's economy by creating millions of new jobs, achieve nergy independence, reduce the trade eficit and propel India forward as a green nation'. In short, solar offers too nany benefits for India to ignore or delay is development.

he views and opinions expressed in this article are solely those of the writer and are not intended to represent the views or policies of the United States epartment of Energy.

dia is one of the sun's most favoured nations, blessed with about 5000 TWh of olar insoluation every year. India should tap this vast resource to satisfy its rowing energy demand – and time is of the essence. Even if a tenth of this otential was utilised, it could mark the end of India's power problems – using the pountry's deserts and farm land.

ould lead the world by embracing the power of the sun, if smart business s and favourable policies are developed and implemented nationwide as v as possible.

ed backing

espite the worldwide recession, the solar photovoltaic (PV) industry has emonstrated unprecedented growth over the past years, with increased emand for solar power attracting more and more players into the market. The ice of solar panels fell 47% in 2011, according to <u>Bloomberg</u>. This has made e business case for solar more compelling because solar PV has, in some arts of the world, already reached grid parity, and it will soon be below the S\$1/W cost target for most of the world sometime this year. This is making plar technology more competitive with traditional energy sources.

he Indian Government should therefore embrace favourable tax structures and onsider providing financial resources to fund projects such as community solar rms as part of their energy development programmes. "India can be a great ower, ushering in a game-changing third industrial revolution by utilising its newable energy resources and collaborating with power producers and

Q Solar E India's eco

Share

Top 5

1. End-of-PV panels

2. Five rea

3. Wind tu products

4. DC mic generatio

Saudi Arabia plans to generate 10 per cent of its energy from solar power by 2020

Q +1 0

🗄 Share

Riding on huge investments and aggressive renewable energy plans, the Kingdom of Saudi Arabia aims to derive 10 per cent of its electrical supply from solar power by 2020. The Arab kingdom has announced ambitious energy project which may see it become world's largest source of solar energy.

The kingdom announced that so far it has secured \$3 billion in funding for developing PV and CSP power plant in the future. Such an achievement will see Saudi Arabia emerge as the world's largest source of solar energy.

A statement by the Saudi government said that the country

hopes to be able to generate 5 GW of solar energy by 2020 in order to meet this target. The move also aims to create more job opportunities, as the Saudi government said the Kingdom's budding solar industry - could create over 15,000 jobs.

The statement further said that the government was encouraging the development of solar farms, plants for processing of raw materials and assembly, and other related facilities. As a result, various investors have already pledged more than \$3 billion for various solar ventures.

tl One of the most talked about projects is a \$380 million polysilicon plant, slated to be built along the Gulf
 k Coast. The development of the Saudi Arabia's solar power sector will be at the heart of Saudi Energy 2012

A tractor is used to clean the photovoltaic panels at Finis Terrae solar park near Calama. Strong desert winds stir up dust that coats the panels, reducing their energy output. Tamara Merino/The Washington Post.

MARIA ELENA, Chile - On the solar farms of the Atacama Desert, the workers dress like astronauts. They wear bodysuits and wraparound sunglasses, with thick canvas headscarves to shield them from the radiation.

of r The sun is so intense and the air so dry that seemingly nothing survives. Across vast, rocky
wastes blanched of color, there are no cactuses or other visible signs of life. It is Mars, with
better cellphone reception.

It is also the world's best place to produce solar energy, with the most potent sun power on the

Rea R

Powered

APPLY TO FUND FO

60 anos atrás ...

60 anos atrás . . .

How did this all begin?

First market for PV ... space

Vanguard I First Solar–Powered Satellite March 17, 1958 12:15:41 UTC

> Can still track Vanguard! www.n2yo.com

Weight: 1.47 kg Transmitter: 108.03 MHz, 5 mW

())

Year

The future . . . scenarios

WORLD ENERGY VISION German Advisory Council on Global Change (WBGU)

The Centre had announced the Jawaharlal Nehru National Solar Mission in 2010 (Credit: Jonas Hamberg)

Prime Minister Narendra Modi has given his approval for increasing the national solar mission capacity from the current 22 gigawatt (GW) to 100 GW by 2022.

In a bid to reduce the use of fossil fuels and increase the capacity of renewables, the Centre had announced the Jawaharlal Nehru National Solar Mission (JNNSM) in 2010 for developing 20-GW capacity solar grids and 2-GW

Egypt's Ministry of Electricity to receive bid first ever solar PV plant

07. OCTOBER 2013 | APPLICATIONS & INSTALLATIONS, GLOBAL PV MARKETS, MARKE BY: IAN CLOVER

The 200 MW plant is being offered on a build-own-operate scheme, with 23 Egyptian and international companies expe lodge bids in the tender.

Algeria Takes Solar Steps with Tender and Grand Plans

Comment New + Follow Comments

Faced with a potentially toxic mis of crippling public spending and decreasing oil and eas production, Algeria is looking for ways to expand their energy sector into new directions,

ncluding a substantial 20 year solar plan. The North African nation took a step towards

In ode namer the Salvaria Depart (Shok

ROSELUND

The nation has again raised its targets for PV deployment, with a goal to install 20 GW annually from 2016 through 2020.

On Tuesday, China's National Energy Administration (NEA) told state news agency Xinhua that China will increase deployment of solar PV to 20 GW annually through 2020, to reach a capacity of 150 GW.

NEA will push for more distributed solar in densely populated Eastern and Central China.

NEA estimates that the nation had installed 35.8 GW of solar PV by the end of June 2015, with 7.7

GW installed in the first half of 2015 alone. This is the second increase of goals made this month, following the increase of China's 2015 installation target to 23.1 GW.

NEA New Energy Office Director Dong Xiufen says that future work will focus on distributed PV in Central and Eastern China as well as Western China, which has seen the bulk of development to date.

bea

If you

port dowr

repo

colu

firm.

we t

12

f Share

30

Tweet

24

Ghan

Demmelbauer/Flickr)

delivering the 200MW solar ener plant project by 2020. The first phase of the project will be expected to be tendered Kahramaa renewable energy in the first quarter of 2014. (Image source: Andreas

technologies section head Saleh

Qatar General Electricity and

been charged with the task of

Water Corporation (Kahramaa) h

mar Hamad al Marri will soon be providing a detailed update on the strategy and technology why requirements for the upcoming solar project at the Solar Qatar Summit 2013, to be held repo mid-November this year.

9 A

World PV Shipments 2001-2017: Where we are

Global Renewable Energy Portfolio

Wind Energy

The PV beginnings . . . 64 years ago !

The PV beginnings . . . It started in 1954 at Bell Telephone Laboratories

The 1956 Spectacular Production Frank Capria's Television Series for Bell Telephone Laboratories

and Stelling

MR. SUN

In 1958, the annual production of photovoltaic cells was ~50 W from Hoffman Electronics!!!

Now ...

Where is all this PV coming from?

PV Shipped (2017) Country of Origin – 93.9 GW

Top PV Manufacturers in 2017

Where is all this PV going?

SAUDI'S ELECTRICITY MARKET: A BRIGHTER FUTURE?

Saudi Arabia has enough sunlight to meet the world's electricity needs four times over. The kingdom should not only expand its solar energy sector but help initiate a region-wide energy grid to help its neighbours meet their growing energy demands.

BY BEN AINSLEY & LEWIS MACKINNON

HE NAME SAUDI ARABIA IS SYNONYMOUS with oil. With 267 billion barrels of reserves and a production level of over 11.6 million barrels per day, Saudi Arabia dominates OPEC and plays a central role in setting global oil supply and price. Nonetheless, Saudi Arabia also has the petential to be a key player in another energy market: solar power. According to NASA data, Saudi Arabia is the 'second sunniest place on earth'-behind Chile's Atacama Desert — with solar irradiation levels along The Red Sea coastline porth of Jeddan as high as 8.60kWh per square metre per day. Theoretically, Saudi Arabia has enough sunlight to meet the world's electricity needs four times over.

In February 2013 a White Paper was realised by the Saudi government laying out plans for the solar power industry. For numerous political, economic and demographic reasons, Saudi Arabia should not only expand its solar energy sector but go further than the White Paper proposes and help initiate a region-wide energy grid to help its neighbours meet their growing energy needs.

Saudi Arabia's desire to move into solar power is an idea still in its infant stages. In 2011 the country did not have a single renewable energy target and at present solar energy accounts for just ten megawatts (MW) of a total state capacity of 41,924MW. Most recently the kingdom completed a 3.5MW plant that will be used to power desalinisation plants.

In February 2013 the King Abdullah City for Atomic and Renewable Energy released a much anticipated White Paper outlining a tender process for solar energy projects and the goals it wishes to achieve. The document outlines a \$109bn investment plan in solar power infrastructure that would total 41,000MW of solar power (by 2030). The 41,000MW would be split between two different varieties of solar power: photovoltaic (16,000MW) and solar thermal (25,000MW). This shift to solar would save the country the equivalent of 523,000 barrels of oil a day. This investment is huge; in 2011 total global solar investment was just \$136bn. Nonetheless, given the changing global market and Saudi Arabia's insatiable energy demand the country should go further and begin

Thin-Film PV Manufacturing Companies (USA)

2012

a-Si and Thin-Si

Uni-Solar – MI Applied Materials – CA Signet Solar – CA EPOD Solar – CA PowerFilm Solar – IA EPV Solar – NJ Solar Thin Films – NJ Xunlight – OH MWOE Solar – OH MV Systems – CO Nano PV – NY Sencera – NC Helianthos – ID Solasta – MA Lightwave Power – MA ProtoFlex – CO New Solar Ventures – NM Innovalight – CA NanoGram – CA CrystalSolar – CO Ampulse – CO Solexel – CA SiGen – CA SierraSolar – CA AstroWatt – TX Parachete Energy – SC

CdTe First Solar – OH Abound Solar – CO GE Primestar Solar – CO Nuvo Solar Energy – CO Calyxo – OH Sunlight 26 – OH Canrom – NY Ascentool – CA Solexant – CA Bloo Solar – CA SunPrint – CA Zia Watt Solar – TX Evolucia – FL W&K Solar – OH EPIR – IL Natcore – MA

Organic

Konarka – MA Plextronics _ PA Solarmer Energy – CA PowerFilm Solar – IA GPEC – NY LumoFlex – GA MicroFab – TX Luna Innovations –VA SolarAmp – NC

CIGS

Global Solar – AZ Ascent Solar – CO Miasolé – CA Nanosolar – CA Heliovolt – TX Solyndra - CA SoloPower – CA JNL Solar – CA Telio Solar – CA AOT – CA Stion – CA NuvoSun – CA Sun King Solar – CA EPV Solar – NJ Amelio Solar – NJ ISET – CA Daystar -NY IBM - NYRESI – NJ First Solar - US Light Solar – NV XSunX - OR Crystalsol – US Suntricity - NY

Thin-Film PV Manufacturing Companies (USA)

a-Si and Thin-Si

Uni-Solar – Ml Applied Materials – CA Signet Solar – CA EPOD Solar – CA PowerFilm Solar – IA EPV Solar – NJ 2012 → 2014 CdTe First Solar – OH Abound Solar – CO GE Primestar Solar – CO Nuvo Solar Energy – CO Calyxo – OH Sunlight 26 – OH

CIGS Global Solar – AZ Ascent Solar – CO Miasolé – CA Nancsolar – CA Heliovolt – TX Solyndra – CA

Bankability

The capacity or capability to manufacture or produce a product competitively (e.g., with an acceptable profit, reliability, etc.)

Lightwave Power – MA ProtoFlex – CO New Solar Ventures – NM Innovalight – CA NanoGram – CA CrystalSolar – CO Ampulse – CO Solexel – CA SiGen – CA SiGen – CA SierraSolar – CA SierraSolar – CA Natcore -- MA

Organic

Konarka MA Plextronics _ PA Solarmer Energy - CA PowerFilm Solar - IA GPEC - NY LumoFlex GA MicroFab - TX Luna Innovations VA SolarAmp NC ISET - CA Daystar NY IBM - NY RESI - NJ First Solar - US Light Solar - NV XSunX - OR Crystalsol - US Suntricity - NY

Longyangxia Dam Solar Park Qinghai, China Phase I: 320 MW (2013) Phase II: 850 MW (2015) Solar Star Facility California, USA 579 MW (2015)

Gurjarat Solar Park Facility India (Several Locations) 857 MW (2015) Topaz Solar Farm California, USA 550 MW (2014)

Name 🗢	Country ¢	Location \$	Capacity MW _p \$	Generation GW·h p.a. \$	Size km² ^{\$}	Year \$	Remarks
Tengger Desert Solar Park	China	Q 37°33′00″N 105°03′14″E	1,500		43	2016	1547MW solar power was installed in Zhongwei, Ningxia by 2015.
Copper Mountain Solar Facility	United States				7		npleted in ase 3 completed struction of mpleted in 2016.
Desert Sunlight Solar Farm	United States				-		IW completed in h of phase II to 0 MW completed
Huanghe Hydropower Golmud Solar Park	China	Q 36°24′00″N 95°07′30″E	500		2	2014	l in October 2011, II and III. 60 MW pnase iv under construction. Within a group of 1,000 MW of co-located plants

Off-Grid versus Grid-Connected?

Historgram of Off-Grid versus **Grid-Connected Photovoltaics** (1982-2017)

00

Technology Diversity

Best Research-Cell Efficiencies

Current R&D Priorities

- Materials and Devices
- Manufacturing
- Reliability

Si Heterojunction Interdigitated Back Contact

The Fast-Evolving World of Bi-Facial Solar Cells/Modules

Benefit Example: Soiling after 27 days in India

Benefit Example: Soiling after 27 days in India

Soiling Loss (%) =
$$I - \frac{Energy_{soiled}}{Energy_{cleaned}}$$

Silicon

Arguments for Thin-Film PV

Semiconductors
 Direct bandgap: more-efficient light absorbers
 Thinner layers required to absorb sunlight—better materials utilization
 Semiconductor bandgaps well-matched to solar spectrum
 and some tunability
 Diversity of semiconductors
 Diversity of device structures
 Diversity device structures</p

- Fewer Processing Steps
- Processing well-suited to Automati Monolithic integration
 Substrate diversity: flexible, rigid, semi-tro
 "Glass in –Module out": Roll-to-roll fabric
 Large-area modules

Performance

Better energy output - kWhr/kW Perform better at lower light levels – kW Perform better in diffuse and as well in a

Challenges

- Higher module efficiency
- Gaps in efficiency: *Between cells and modules; Between best cells and attainable levels*
- Thinner absorber layers (<1.0 µm?)
- Alternative absorber production (processes)
- Faster absorber processing
- Stability and encapsulation (water/water vapor ingress)
- Materials availability/cost
- Uniformity and stoichiometry *(manufacturing issues)*
- Standardization of equipment
- Environmental/materials concerns
- Recycling, "Insurance"
- Substrates (glass, plastics)
- Engineering of $V_{oc} \dots$

"Bankability"

32

© Fraunhofer ISE

Data: M.J. de Wild-Scholten 2013; CPV data: "Environmental Sustainability of Concentrator PV Systems: Preliminary LCA Results of the Apollon Project" 5th World Conference on PV Energy Conversion. Valencia, Spain, 6-10 September 2010. Graph: PSE AG 2014

Thin Films: The commercial leaders

Thin Films: The commercial leaders

Series 6 Module Technology

FRAME ON FRAME STACKING

HIGHLY ROBUST

LESS WASTE

INDUSTRY-LEADING MODULE WARRANTY

98% WARRANTED POWER IN THE FIRST YEAR

10-YEAR LIMITED PRODUCT WARRANTY

25-YEAR 0.5% LINEAR PERFORMANCE WARRANTY

 \cap

INNOVATIVE UNDER-MOUNT FRAME

SOLAR FINANCE & VC

Solar Frontier's CEO Aims for 40-Cents-Per-Watt CIGS Modules

Company > P

Capacity: 60 Site Area: 50 Investment: On line: 2009

Solar Frontier is Kunitomi Plant is wattages availab commercializatio will enable the m class cost levels,

Solar For The Terawatt Era

Solar Frontier has continued to push CIGS efficiency, with its latest record producing a 22.3% CIGS cell, in partnership with the Japan's New Energy and Industrial Technology Development Organization.

Terrestrial Solar Spectrum

Terrestrial Solar Spectrum

Multiple-junction solar cells use stacks of different semiconductors to use more of the solar spectrum

Shifts the major system cost from the cell to the optics Can afford more efficient, expensive cells

Best Research-Cell Efficiencies

Organic Photovoltaics (OPV)

- "Flexible"
- Roll-to-roll processing
- Low-energy production
- Inexpensive

Organic Photovoltaics (OPV)

>

L.L. (Kaz) Kazmerski, NREL (Emeritus) and RASEI, University of Colorado Boulder

rom-energy production

• Inexpensive

Best Research-Cell Efficiencies

Evolving Complexity of PV Materials Science

From Lab Bench to Market

Perovskite

Dye-Sensitized Solar Cell (DSSC) (Grätzel Cell)

Li-TFSI: Lithium Bis-trifloromethanesulfonimide-doped spiro-MeOTAD

Hole Transporting Layer (Decrease charge recombination and prevent direct contact between perovskite and metal electrode)

Hybid Perovskite (organic-inorganic)

Methyl-ammonium lead halide [(MA)PbX₃]

Perovskite

ISSUES ('greater than 20% in lab but ...')

- "Get the lead out" (toxicity)
- Stability (performance)
- Manufacturability (large area)

Innovation in Approach: Not your father's materials science anymore! Materials by Design + Artificial Intelligence

- "Edisonian Approach" Conventional trial-by-error science
- "Materials-by-Design" -
- Inverse process: Define desired materials functionalities and work backward to computationally define (determine) best-of-class materials

The Mystery of the Missing Materials

Stay alert, Sherlock Holmes. The Center for Inverse Design is "afoot"!

The Center (CID)—an Office of Science Energy Frontier Research Center—is in hot pursuit of new materials with extraordinary properties. And under CID's magnifying glass is the vast materials space containing the promising A_2BX_4 spinel metal-chalcogenide and ABX half-Heusler tetrahedral compounds, which have great potential for solar-cell and other electronic and optical applications.

Curiously and unexpectedly, when CID researchers turned to the highly respected compilations of documented inorganic compounds, they found that most families of these interesting materials were *missing*!

- □ Were they not feasible thermodynamically?
- □ Or were they simply impossible to synthesize?
- \Box Or were they somehow overlooked
- by those meticulous encyclopedias amassed by Inorganic Crystal Structure Database, Bergerhoff and Brown, the International Centre for Diffraction Data Power Diffraction Files, and Wyckoff?

For example, in examining the A₂BX₄ spinel compounds, there are 684 "In solving a problem of this sort, the grand thing is to be able to reason backward." (A Study in Scarlet, 1887)

Enter the scient ac sleuthsthe CID inverse design partners-from the National Renewable Energy Laboratory (NREL), University of Colorado-Boulder, Northwestern University, Oregon State University, and SLAC National Accelerator Laboratory. First, the theory specialists followed the CID-developed inverse design methodology: consider design principles that relate to materials being possible because of their thermodynamic stability. Can inverse design find some evidence for the existence of these missing materials?

 $\begin{array}{c} V_2 SiO_4 = stable \\ \hline V_2 SiO_4 = sta$

"When you have eliminated the impossible, whatever remains, however improbable, must be the truth." (Sign of the Four, 1890)

The high-throughput screening these materials is illustrated for case of V_2SiO_4 , an oxide spinel Applying first-principles thermodynamic theory, the scie calculated the energy of formati each possible combination of elements in the spinel (see the n below).

Results of chemical potential calculations were also plotted o triangle diagrams for pairs of elements (e.g., see the V-Si oxid triangles on the bottom of the n page). By eliminating all the ot non-spinel phases, researchers discovered a "aliver" of

High-throughput inverse-design calculations

The most famous halide perovskite is MAPbl₃. Our target is to design other materials with comparable performance & better stability.

The Mystery of the Missing Materials

Stay alert, Sherlock Holmes. The Center for Inverse Design is "afoot"!

The Center (CID)—an Office of Science Energy Frontier Research Center—is in hot pursuit of new materials with extraordinary properties. And under CID's magnifying glass is the vast materials space containing the promising A₂BX₄ spinel metal-chalcogenide and ABX half-Heusler tetrahedral compounds, which have great potential for solar-cell and other electronic and optical applications.

Curiously and unexpectedly, when CID researchers turned to the highly respected compilations of documented inorganic compounds, they found that most families of these interesting materials were *missing*!

- □ Were they not feasible thermodynamically?
- □ Or were they simply impossible to synthesize?
- \Box Or were they somehow overlooked
- by those meticulous encyclopedias amassed by Inorganic Crystal Structure Database, Bergerhoff and Brown, the International Centre for Diffraction Data Power Diffraction Files, and Wyckoff?

For example, in examining the A₂BX₄ spinel compounds, there are 684 "In solving a problem of this sort, the grand thing is to be able to reason backward." (A Study in Scarlet, 1887)

Enter the scient ac sleuthsthe CID inverse design partners-from the National **Renewable Energy** Laboratory (NREL), University of Colorado-Boulder, Northwestern University, Oregon State University, and SLAC National Accelerator Laboratory. First, the theory specialists followed the CID-developed inverse design methodology: consider design principles that relate to materials being possible because of their thermodynamic stability. Can inverse design find some evidence for the existence of these missing materials?

"When you have eliminated the impossible, whatever remains, however improbable, must be the truth." (Sign of the Four, 1890)

The high-throughput screening these materials requestrated for case of V_2SiO_4 , an oxide spinel Applying first-principles thermodynamic theory, the scie calculated the energy of formati each possible combination of elements in the spinel (see the file

Results of chemical potential calculations were also ploted o triangle diagrams for pairs of elements (e.g., see the V-Si pxi triangles on the bottom of the n page). By eliminating all the of non-spinel phases, researchers discovered a "eliver" of

High-throughput inverse-design calculations

The most famous halide perovskite is MAPbl₃. Our target is to design other materials with comparable performance & better stability.

Record tandem (perovskite on Si)

Record tandem

27.3% confirmed (2018)

Two-terminal, perovskite/perovskite tandem

(perovskite-perovskite)

>25%? (2018)

"The only thing about the future that you couldn't predict . . . was the history you didn't know." "But, it is easier to grasp the future if you know what it should look like . . ."

"And, the best way to protect the future . . . is to create it."

Amanhã é hoje!

Parabolic Trough

FIGURE 28. Concentrating Solar Thermal Power Global Capacity, by Country and Region, 2007-2017

Jobs in Renewable Energy

Bioener biomass, bi	'gy ofuels,	TABLE 1. Estimated Direct and Indirect Jobs in Renewable Energy, by Country and Technology							
i Geothe	rmal		World	China	Brazil	United States	India	Japan	Germany
Solar el solar PV, C heating/co	nergy SP, solar		Thousand jobs						
Wind p	ower	🔅 Solar PV	3,365	2,216	10	233	164	272	36
		Liquid biofuels	1,931	51	795 ⁹	299 ^h	35	3	24
(small-scale	ower	其 Wind power	1,148	510	34	106	61	5	160
	ower	Solar thermal heating/cooling	807	670	42	13	17	0.7	8.9
	.)	💟 Solid biomassª, b	780	180		80 ⁱ	58		41
= 50,000 jo	bs	🎦 Biogas	344	145		7	85		41
REN 21 ≅ .ª త ≋ .⊇	-	≥ Hydropower (small-scale)°	290	95	12	9.3	12		7.3 ^j
		Geothermal energy ^{a, d}	93	1.5		35		2	6.5
		🐯 CSP	34	11		5.2			0.6
		Total	8,829 [†]	3,880	893	786	432	283	332
		➢ Hydropower (large-scale) ^e	1,514	312	184	26	289	20	7.3 ^j
Jobs in	Ren	Total (including large-scale hydropower)	10,343	4,192	1,076	812	721	303	332 ^j

Total EU^k

74[|]

1,268

1,268

74[|]

Our technology world in 1998

Reverses Einstein's "biggest blunder" Dark energy: Cosmological constant real

Other world events in 1998

Prime Minister of U.K.

William Clinton President of U.S.

Oscar for best film: Titanic

EU agrees to "EURO" currency Ist issue – January I, 1999

Dr. Benjamin Spock (1903-1998)

Sinto muito ...

GOLD CUP Scoreboard BRAZIL O USA 3000 1

Wind Energy

UNIVERSAL-INTERNATIONAL NEWS NEW MON **Reds Launch First** Space Satellite

YOICE: ED HERLIHY

World PV Shipments 2001-2017: Where we are

Seminário de Troca de Conhencimentos *Geração Solar Fotovoltaica*

Florianôpolis – SC – Brasil • 09 de Novembro de 2018

Objectives

- Explore the history of this PV technology
- Establish where we are today

fotovoltaicaufsc

• Examine where we expect to be in the future

World PV Shipments 2006-2017: Where we are

94 Gigawatts in I-year!
Semiconductors
 Direct bandgap: more-efficient light absorbers
 Thinner layers required to absorb sunlight—better materials utilization
 Semiconductor bandgaps well-matched to solar spectrum
 and some tunability
 Diversity of semiconductors
 Diversity of device structures

Semiconductors

Direct bandgap: more-efficient light absorbers

Semiconductors

Direct bandgap: more-efficient light absorbers

Thinner layers required to absorb sunlight-better materials utilization

Semiconductor bandgaps well-matched to solar spectrum

and some tunability Diversity of semiconductors Diversity of device structures

Semiconductors
 Direct bandgap: more-efficient light absorbers
 Thinner layers required to absorb sunlight—better materials utilization
 Semiconductor bandgaps well-matched to solar spectrum
 and some tunability

and some tunability Diversity of semiconductors Diversity of device structures

• Fewer Processing Steps

Innovation

Artificial intelligence (AI) (also called "machine learning") is an area of computer science that emphasizes the creation of intelligent machines or operations that work and react like humans. Some of the activities for which computers with artificial intelligence are designed include:

- Speech recognition
- Learning
- Planning
- Problem solving
- Design

Artificial intelligence (AI) (also called "machine learning") is

an area intellige the act designe

SpeLeaPlarPro

Machine learning, by definition, is any technology that uses algorithms to try to create repeatable results. When you talk about machine learning, you're talking about machine learning algorithms, no matter what form they may take. on of

ome of

ice are

Another way to put this is that the algorithms allow the machine to learn from its operations. The process is iterative – as the machine runs, it works on new sets of data to provide insights.

Much of what the algorithms do involves extrapolating from available data. Essentially, the algorithms are taking in that available data and parsing it, evaluating it and comparing different data pieces to come up with results.

The Mystery of the Missing Materials

Stay alert, Sherlock Holmes. The Center for Inverse Design is "afoot"

The Center (CID)-an Office of Science Energy Frontier Research Center-is in hot pursuit of new materials with extraordinary properties. And under CID's magnifying glass is the vast materials space containing the promising A₂BX₄ spinel metal-chalcogenide and ABX half-Heusler tetrahedral compounds, which have great potential for solar-cell and other electronic and optical applications.

Curiously and unexpectedly, when CID researchers turned to the highly respected compilations of documented inorganic compounds, they found that most families of these interesting materials were missing! \Box Were they not feasible thermodynamically?

 \Box Or were they simply impossible to synthesize?

□ Or were they somehow overlooked by those meticulous encyclopedias amassed Cu

Co

Fe -

Mn

Cr

Sn

Hg

Cd

Zn

Ba

Sr Ca

Mg

Be

by Inorganic Crystal Structure Database, Bergerhoff and Brown, the International Centre for Diffraction Data Power Diffraction Files. and Wyckoff?

≺ Ga For example, in examining the A₂BX₄ spinel compounds, there are 684 possible combinations of elements that may be tabulated. Yet, only 255 combinations have been reported. For the 714 ABX compounds, only 226 are in the literature. The mystery is: What happened to the missing 429 spinels and the 488 half-Heuslers?

"In solving a problem of this sort, the grand thing is to be able to reason backward." (A Study in Scarlet, 1887)

Enter the CID inverse design partners-from the National Renewable Energy Laboratory (NREL), University of Colorado-Boulder. Northwestern

University, Oregon State University, and SLAC National Accelerator Laboratory. First, the theory specialists followed the CID-developed inverse design methodology: consider design principles that relate to materials being possible because of their thermodynamic stability. Can inverse design find some evidence for the existence of these missing materials?

 $V_2 SiO_4 = stable$

	V	V	V								
• • • + + • + -	V	~	V								
- / / / / / / 0	V	V	V								
- <i>v v v v</i> -	V	V	V			1					
~~~~~~	V	-	-	-	-						
	<b>A</b>	1	-								
· · · + + 0	2	_	-			1					
- <i>v v v v - v -</i>											
			-	-	_	_	~	-	-	-	~
· · · · · · · · -			-	-	_	-	1	~	~	~	~
~~~~~~~			~	_	_	-	1	2	~	2	2
	_	~	-	_					-		
	1	~	~	_		<u>+</u>					
	2	1	2	~							
reported		1		-							
uproported stable											
unreported stable				~							
unreported undesided	"	r,	v,				ç				
• unreported undecided	V	~	V	-		ļ					
	V	V	-	~							
e Mg Ca Sr Ba Zn Cd Hg	Si	Ge	Sn	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
	B	ato	h								

Matrix for A₂BO₄ showing that of the 164 possibilities. only 101 compounds are reported. Of the 63 unreported compounds, 14 are stable, 49 are not stable, and 3 are still undetermined. V₂SiO₄ is highlighted as unreported, but predicted to be stable.

"When you have eliminated the impossible, whatever remains however improbable, must be the truth." (Sign of the Four, 1890)

The high-throughput screening these materials is Illustrated for the case of V_2 SiO₄, an exide spin. Applying first-principles thermodynamic theory, he scientists calculated the energy of formation for each possible combination elements in the spinel (see the natrix below).

Results of chemical potential calculations were also plotted onto triangle diagrams for pairs of elements (e.g., see the V-Si oxide triangles on the bottom of the next page). By eliminating all the other non-spinel phases, researchers discovered a "sliver" of possibilities-an undiscovered material that should be stable according to it predicted pressure and temperature conditions. A missing material was discovered.

High-throughput inverse-design calculations

The most famous halide perovskite is MAPbl₃. Our target is to design other materials with comparable performance & better stability.

ery of the Missing Materials

ock Holmes. The se Design is "afoot"!

)-an Office of Frontier Research t pursuit of new straordinary under CID's s is the vast materials the promising etal-chalcogenide and er tetrahedral ch have great ir-cell and other otical applications.

nexpectedly, when turned to the highly lations of ganic compounds, nost families of these ials were missing! feasible cally?

imply impossible to

omehow overlooked

ulous amassed Crystal base, d Brown, al Centre Data tion Files,

examining e are 684 ations of iy be nly 255 ve been The

714 ABX / 226 are t happened 9 spinels Heuslers?

"In solving a problem of this sort, the grand thing is to be able to reason backward." (A Study in *Scarlet*, 1887)

Enter the scientific sleuthsthe CID inverse design partners-from the National Renewable Energy Laboratory (NREL), University of Colorado-Boulder, Northwestern University, Oregon State University, and SLAC National Accelerator Laboratory First, the theory specialists followed the CID-developed inverse design methodology: consider design principles that relate to materials being possible because of their thermodynamic stability. Can inverse

design find some evidence for the existence of these missing materials?

Matrix for A₂BO₄ showing that of the 164 possibilities. only 101 compounds are reported. Of the 63 unreported compounds, 14 are stable, 49 are not stable, and 3 are still undetermined. V₂SiO₄ is highlighted as unreported, but predicted to be stable.

"When you have eliminated the impossible, whatever remains, however improbable, must be the truth." (Sign of the Four, 1890)

The high-throughput screening of these materials is illustrated for the case of V₂SiO₄, an oxide spinel. Applying first-principles thermodynamic theory, the scientists calculated the energy of formation for each possible combination of elements in the spinel (see the matrix below).

Results of chemical potential calculations were also plotted onto triangle diagrams for pairs of elements (e.g., see the V-Si oxide triangles on the bottom of the next page). By eliminating all the other non-spinel phases, researchers discovered a "sliver" of possibilities-an undiscovered material that should be stable according to it predicted pressure and temperature conditions. A missing material was discovered.

"When you eliminated ible, whatever robable, must the Four.

reening

le spin.

ion o

ential

airs of

archers

covered

stable

the for the

he scientists

see the matrix

plotted onto

V-Si oxide

of the next

ll the other

d pressure and

A missing

f formation i

High-throughput inverse-design calculations

The most famous halide perovskite is MAPbl₃. Our target is to design other materials with comparable performance & better stability.

The Mystery of the Missing Materials

Stay alert, Sherlock Holmes. The Center for Inverse Design is "afoot"!

The Center (CID)—an Office of Science Energy Frontier Research Center—is in hot pursuit of new materials with extraordinary properties. And under CID's magnifying glass is the vast materials space containing the promising A₂BX₄ spinel metal-chalcogenide and ABX half-Heusler tetrahedral compounds, which have great potential for solar-cell and other electronic and optical applications.

Curiously and unexpectedly, when CID researchers turned to the highly respected compilations of documented inorganic compounds, they found that most families of these interesting materials were *missing*!

- thermodynamically?
- □ Or were they simply impossible to synthesize?
- □ Or were they somehow overlooked by those meticulous encyclopedias amassed by Inorganic Crystal Structure Database, Bergerhoff and Brown, the International Centre for Diffraction Data Power Diffraction Files, and Wyckoff?

For example, in examining the A_2BX_4 spinel compounds, there are 684 possible combinations of elements that may be tabulated. Yet, only 255 "In solving a problem of this sort, the grand thing is to be able to reason backward." (A Study in Scarlet, 1887)

Enter the scient fic sleuthsthe CID inverse disign partners-from the National Renewable Energy Laboratory (NREL), University of Colorado-Boulder. Northwestern University, Oregon State University, and SLAC National Accelerator Laboratory. First, the theory specialists followed the CID-developed inverse design methodology: consider design principles that relate to materials being possible because of their thermodynamic stability. Can inverse design find some evidence for the existence of these missing materials?

$V_2SiO_4 = stable$ $V_2SiO_4 = stable$

" n":ar 1/00 have eliminated the impossible, whatever remains, however improbable, must bothe truth." (Sign of the Four,

The high throughput screeping of these materials is illustrated for the case of V_2SIO_4 , an oxide spinel. Applying first principles thermodynamic theory, the scientist calculated the energy of formation f each possible combination of elements in the spinel (see the matri below).

Results of chemical potential calculations were also plotted onto triangle diagrams for pairs of elements (e.g., see the V-Si oxide triangles on the bottom of the next page). By eliminating all the other non-spinel phases, researchers discovered a "sliver" of possibilities—an undiscovered material that should be stable

-throughput inverse-design calculations

amous halide perovskite is MAPbl₃. Our target is to design rials with comparable performance & better stability.

Materials Design with Artificial Intelligence

Inverse Design High-Throughput Calculations

Varieties of Perovskites

Methyl-ammonium lead halide [(MA)PbX₃]

Electronic structure

-0.5

(MA)Gel₃ (MA)Snl₃ (MA)Pbl3

Oxide-Perovskites

ABO₃ A_2BO_4

Thermodynamic stability of AM^{IV} X₃^{VII} hybrid halide perovskites 0.5 (a) 0 APbl. APbBr₃ -0.5 0.5 (b) "Materials-by-Design" Rese 0 ASnl₃ • PH ASnBr. -0.5 - ASnCl₃ 0.5 (c) Chlorides and bromides are more stable to decomposition n

Sn more stable than Pb for "MA" or "DA"

Stability?

than iodides.

[Cs]⁺ [HA]⁺ [DA]⁺ [MA]⁺ [FM]⁺ [FA]⁺ [EA]⁺ [GA]⁺ [DEA]⁺ [M]⁺

AGel₃

AGeBr₂

Example: Materials by Design

Not your father's materials science anymore!

- "Edisonian Approach" Conventional trial-by-error science
- "Materials-by-Design" -
- Inverse process: Define desired materials functionalities and work backward to computationally define (determine) best-of-class materials

Innovation, Artificial Intelligence and Robotics ...

Exhibit Se

SOLAR ENGINEERING EXHIBI

October 29 - November 13, 1955 Hours: 9 A.M. to 4 P.M. Daily

Civic Center - Central Avenue at McDowell Road

Phoenix, Arizona

presented in conjunction with

534	LE	TTERS TO THE EDITOR	_
			rption of
this Section C			
ibit Section G		Statistics of the statistic literature in the	
SALINE WA	ATER	STILLS	burgh, Pennsylvania
In many dry desert areas of the world	there is	an abundant supply of saline or	,
land areas could be made habitable. The	e conver	listillers developed to date can be.	; have been pub-
and are, used where fresh water is needed	d for hu	man or industrial consumption. In	bus skin effect in
most of the stills in this section, water is blackened surface surrounded by transpare	ent walls	ated from a thin water layer on a	1 which the elec-
successive surrounded by transpare	.ne wane	on which condensation takes place.	ared to the skin
Filted Solar Still	G4.	Two-Cylinder Glass Solar Still	gnetic field, and
Filted stills are able to collect more solar radiation		This still was developed by Everett D. Howe at the University of California in Barkeley	is not properly
Developed by: Maria Telkes		Exhibited by: University of California	Under these cir-
New York University		Berkeley, California	in the metal no
New York, N. Y.	C5	Still for From Has	the skin-depth
United States Department of the Interior	00.	This still was designed by F. A. Brooks and Harold	retion of operation
survey braites is epartment of the interior.		D. Lewis of the Department of Agricultural Engi-	rption of energy
Two Plastic Stills		neering of the University of California.	of the metal
Chese stills illustrate the possible use of inexpensive		Exhibited by: University of California Davis, California	frequency region
Developed by:	(august)		fraction ϕ of the
Bjorksten Research Laboratories, Inc.	<i>G</i> 6.	SOMOR Still	are diffusely re-
Madison, Wisconsin		Exhibited by: Societa Motori Recuperi (SOMOR)	ivity for normal
For the Saline Water Conversion Program of the			
since States Department of the Interior.	<i>G</i> 7.	Solar Fountain	2
ife Raft Still		Built by: F. A. Bonaventura and D. E. Plympton San Diego, California	(1-b) = - (1)
These stills were developed during World War II	00		4 c'
y Dr. Maria Telkes, and are now often supplied with raft equipment	68.	(panels)	1
Exhibited by: Wright Air Development Center		Prepared by: Saline Water Conversion Program	i^* and n are the
Wright-Patterson Air Force Base		United States Dept. of the Interior	ons, respectively.
Dayton, Ohio		washington, D. C.	sorptivity of an
Sold Designed States Designed States		alapari M. H. M. Ing printer will be die H. J. P.	pr room tempera-
bit Section H			b the theory for
PHOTOVOLTAI	C CO	NVERTERS	u the theory for
Various laboratories have recently develop	ped pho	tovoltaic materials capable of con-	sive test of the
verting a substantial percentage, sometim	aes as m	such as 10 percent of the incident	to measure the
teries" and have received considerable at	ttention	in recent years.	welength of the
Contraction of the second second second second			$=4 \mu$. The prin-
ry and Motor	H4.	Display of Commercial Silicon Solar Batteries	ated in Fig. 1.
the silicon solar battery when		Chicago, Illinois	is incident on a
idiation.	-		r winding The
Telephone Laboratories	H5.	A different photoseltais material and mine and the	ik to the helium
Tay mill, New Jersey		(instead of silicon) has been used in this solar	he copper target
n Process		battery.	er stage, ⁶ which
silicon solar battery.		Developed by: Wright Air Development Center	er and a heater
Telephone Laboratories	100	Dayton, Ohio	A DA DA BAR M
ray Hill, New Jersey	116	Solar-normered Experimental Padia Transmitter	target and ab-
and the second second	110.	This transmitter is self-contained. Transistors are	mperature some-
useful to supply power to iso-		used instead of electron tubes. A selenium cell sup-	P. The changes in
n equipment. This exhibit shows		plies the necessary power.	ith the rediction
Telephone Laboratories		Developed by: Edward Keonjian General Electric Company	ach stage to pro
ray Hill, New Jersey		Syracuse, New York	the radiation on

Phys Rev. 96, 533 (1954).

the radiation on. ed to each stage, he copper target.

