CHALLENGES OF DESIGNING AND OPERATING PV PLANTS UNDER CHILEAN CONDITIONS

Centro de Pesquisa e Capacitacao em Energia Solar de Universidade Federal de Santa Catarina Florianópolis, Brasil 09.11.2018

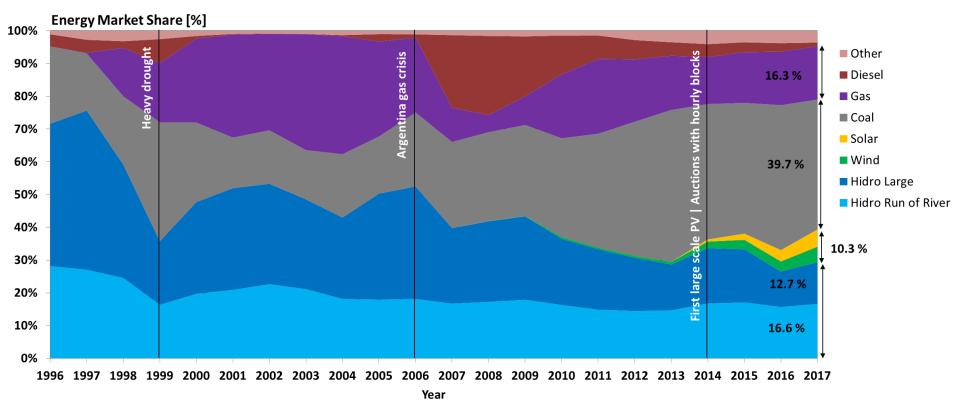
Gonzalo Ramírez Sagner

gonzalo.ramirez@fraunhofer.cl

Outline

Chile

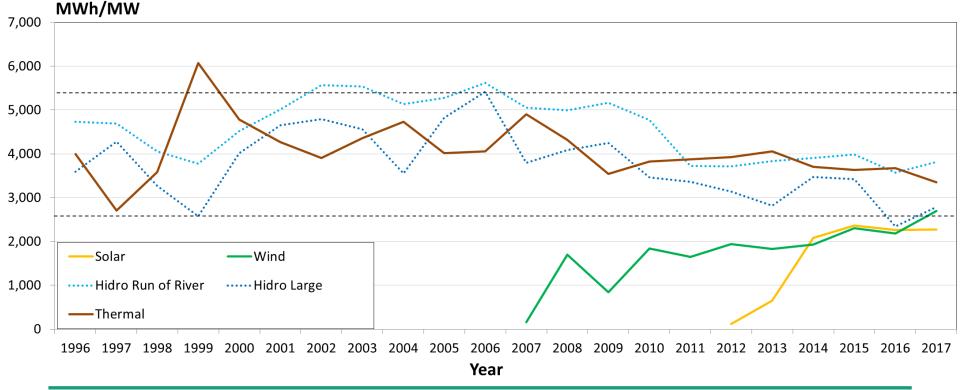
- Market & Operating conditions
- PV Technology Trends
 - Advanced services for the industry
- Soiling
 - Phenomena description
 - Impact
 - Optimal economic management
- Key takeaways


Chile

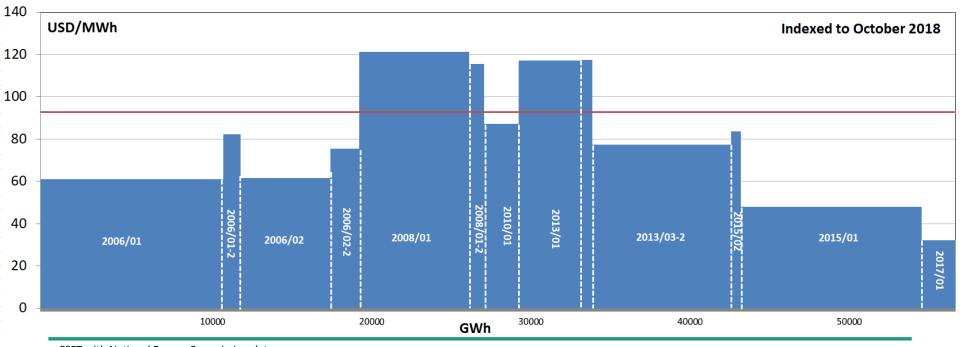
Bloomberg. Ph: Jamey Stillings

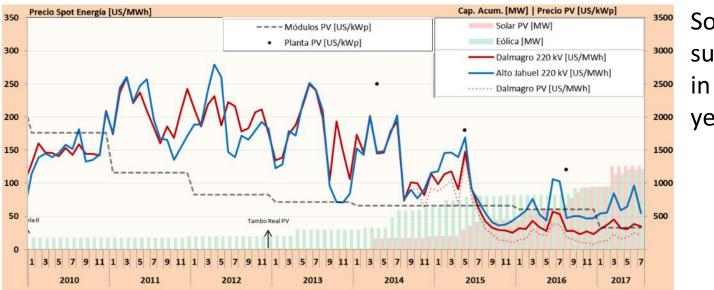
Market Conditions | Energy

- Hydro and fossil fuels dominates the market (86.4 %)
 - Solar (PV) and wind are the fastest growing technologies in energy and capacity terms

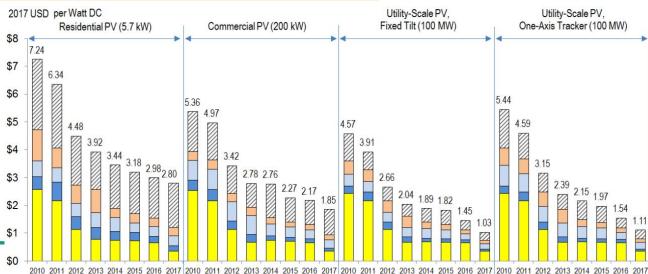

CSET with National Energy Commission data.

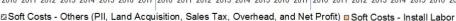
Market Conditions | Energy | 'Specific yield'


- Hydro power plants portfolio presents lower capacify factors (new normal?)
- Wind development matures locating and finding better capacity factor sites
- Solar PV is expected to stay constant or decrease due to exploitment of lower irradiation zones (thanks to lower CapEx)


Market Conditions | Regulated client auctions

- Solar (PV), wind and hydro (amortized)
 - No new coal plants are foreseen in the future (social, environmental and economic drivers)
 - No new large hydro (dams) plants are foreseen in the future (only run of the river | social)
 - Even CCGTs are having issues earning PPAs (CSP at 48 USD/MWh)


Market Conditions | Technology trends | Past



Solar (PV) has substantially dropped in price in the last 7 years.

Large Scale PV plants in Chile. Source CSET.

FotovoltaicaUFsc

■ Hardware BOS - Structural and Electrical Components ■ Inverter ■ Module

PV systems prices in USA. Source NREL, DOE.

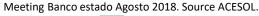
Market Conditions | Technology trends | Present

CAPEX -Tracker							
Item	USD	USD/Wp	%				
Modules	35,000,000	0.350	35.9%				
Structure	15,000,000	0.150	15.4%				
Inverter	6,000,000	0.060	6.1%				
Electric installation	4,500,000	0.045	4.6%				
Civil Works	9,756,917	0.098	10.0%				
Cabling DC - AC	2,300,000	0.023	2.4%				
Construction management	2,927,075	0.029	3.0%				
EPC management	2,927,075	0.029	3.0%				
Others	3,414,921	0.034	3.5%				
Combiner Boxes	1,463,537	0.015	1.5%				
Engineering	400,000	0.004	0.4%				
SCADA	350,000	0.004	0.4%				
Substation (S)	12,000,000	0.120	12.3%				
Transmission Line (TL - 5 km)	1,529,642	0.015	1.6%				
Total	97,569,167	0.976	100.0%				
BOS	62,569,167	0.626	64.1%				
BOS (w/o S & TL)	49,039,525	0.490	50.3%				

Cost structure for a 100 MWp plant in Chile. Source CSET 2017.

Large scale solar (PV) costs less than 1 USD/Wp turn-key since 2017.

Valores referenciales de sistemas fotovoltaicos, generación y retorno de inversión (Santiago)



-8-1								
Potencia sistema olar (kWp)	Ejemplos de segmentos de uso	Superficie requerida neta (incl separación entre filas)	Valor aprox. en USD/Wp	Valor total aprox. Pesos \$	Ahorro vida útil	Retorno inversión en años	Valor kWh red eléctrica en Pesos S	Valor kWh solar en Pesos S
2,5	Casas, pequeño comercio. Valores con IVA	7 (11) m2	USD 2,38	3.808.000	8.390.000	11,3	106,3	38,1
							61,5	
5	Casas, pequeño comercio, riego. Valores con IVA	35 (55) m2	USD 2,14	6.854.400	16.780.000	10,2	106,3	34,3
							61,5	
30	Edificios, comercio, riego	210 (330) m2	USD 1,40	26.880.000	69.960.000	9,6	58,3	22,4
100	Comercio, industria	700 (1.100) m2	USD 1,00	64.000.000	233.200.000	6,9	58,3	16,0
500*	Industria, autoconsumo	3.500 (5.500) m2	USD 0.90	288.000.000	1.166.000.000	6,	2 58,3	14,4
8000**	PMGD	21.000 (33.007) m2	USD 0,80	1.536 MM	6.144.000.000	6,	2 51,2	14,4

Consideraciones: 1 USD = 640 \$, valor BT1 \$106,3 IVA incluido y excedentes \$61,5 IVA incluido,5. Se considera 0% autoconsumo 50% venta de excedentes, generación anual 1600kWh/kWp (Santiago).

Para sistemas >100kWp no aplica ley actual 20.571, se considera 100% autoconsumo. Modificación de ley 0.571 en curso.

*PMGD: venta de energía a precio nudo, posible combinación con autoconsumo. Tramitación requiere leclaración de Impacto Ambiental (<=3MW)

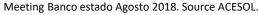
Market Conditions | Technology trends | Present

CAPEX -Tracker								
Item	USD	USD/Wp	%					
Modules	25,000,000	0.250	29.4%					
Structure	15,000,000	0.150	17.6%					
Inverter	6,000,000	0.060	7.0%					
Electric installation	4,500,000	0.045	5.3%					
Civil Works	8,514,681	0.085	10.0%					
Cabling DC - AC	2,300,000	0.023	2.7%					
Construction management	2,554,404	0.026	3.0%					
EPC management	2,554,404	0.026	3.0%					
Others	2,980,138	0.030	3.5%					
Combiner Boxes	1,463,537	0.015	1.7%					
Engineering	400,000	0.004	0.5%					
SCADA	350,000	0.004	0.4%					
Substation (S)	12,000,000	0.120	14.1%					
Transmission Line (TL - 5 km)	1,529,642	0.015	1.8%					
Total	85,146,806	0.851	100.0%					
BOS	60,146,806	0.601	70.6%					
BOS (w/o S & TL)	46,617,165	0.466	54.7%					

Cost structure for a 100 MWp plant in Chile. Source CSET 2017.

Large scale solar (PV) costs less than 1 USD/Wp turn-key since 2017.

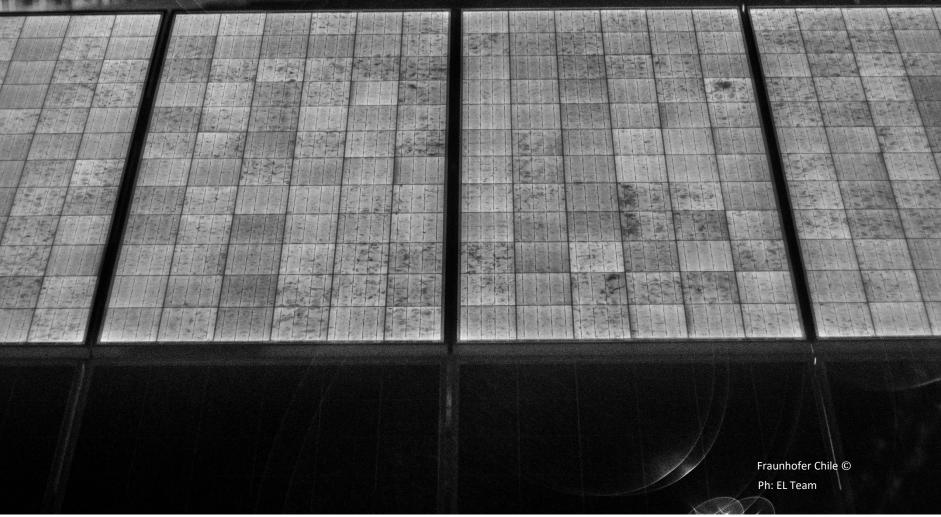
Valores referenciales de sistemas fotovoltaicos, generación y retorno de inversión (Santiago)

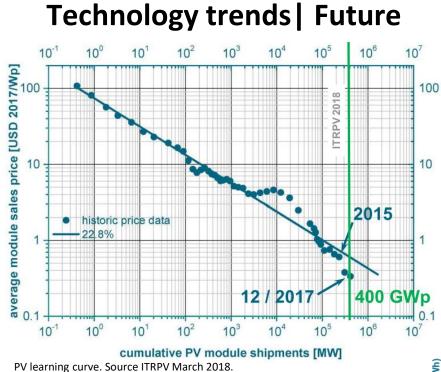


-0-/								
Potencia sistema olar (kWp)	Ejemplos de segmentos de uso	Superficie requerida neta (incl separación entre filas)	Valor aprox. en USD/Wp	Valor total aprox. Pesos \$	Ahorro vida útil	Retorno inversión en años	Valor kWh red eléctrica en Pesos S	Valor kWh solar en Pesos S
2,5	Casas, pequeño comercio. Valores con IVA	7 (11) m2	USD 2,38	3.808.000	8.390.000	11,3	106,3	38,1
							61,5	
5	Casas, pequeño comercio, riego. Valores con IVA	35 (55) m2	USD 2,14	6.854.400	16.780.000	10,2	106,3	34,3
			1	and and and a second			61,5	
30	Edificios, comercio, riego	210 (330) m2	USD 1,40	26.880.000	69.960.000	9,6	58,3	22,4
100	Comercio, industria	700 (1.100) m2	USD 1,00	64.000.000	233.200.000	6,9	58,3	16,0
500*	Industria, autoconsumo	3.500 (5.500) m2	U5D	288.000.000	1.166.000.000	6,	2 58,3	14,4
8000**	PMGD	21.000 (33.007) n2	USD 0,80	1.536 MM	6.144.000.000) 6,	2 51,2	14,4

Consideraciones: 1 USD = 640 \$, valor BT1 \$106,3 IVA incluido y excedentes \$61,5 IVA incluido,5. Se considera 0% autoconsumo 50% venta de excedentes, generación anual 1600kWh/kWp (Santiago).

Para sistemas >100kWp no aplica ley actual 20.571, se considera 100% autoconsumo. Modificación de ley 0.571 en curso.

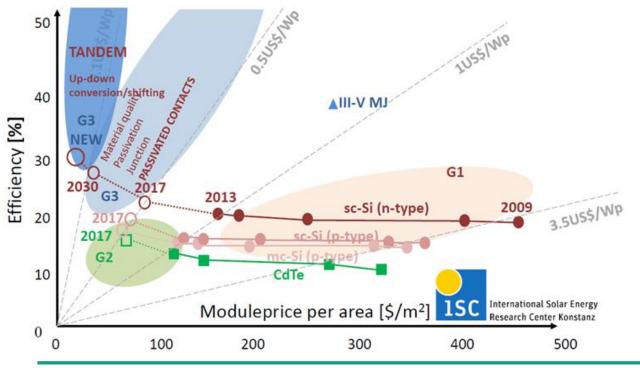

*PMGD: venta de energía a precio nudo, posible combinación con autoconsumo. Tramitación requiere leclaración de Impacto Ambiental (<=3MW)



PV Technology Trends

Price (CAPEX of PV plant) is expected to drop 7 %/year during the next 5 years.

80% Debt with 18 year tenor. 20-year straight line depreciation and 25 year analysis period. 4% nominal debt and 5% nominal equity discount rates with 2% inflation.

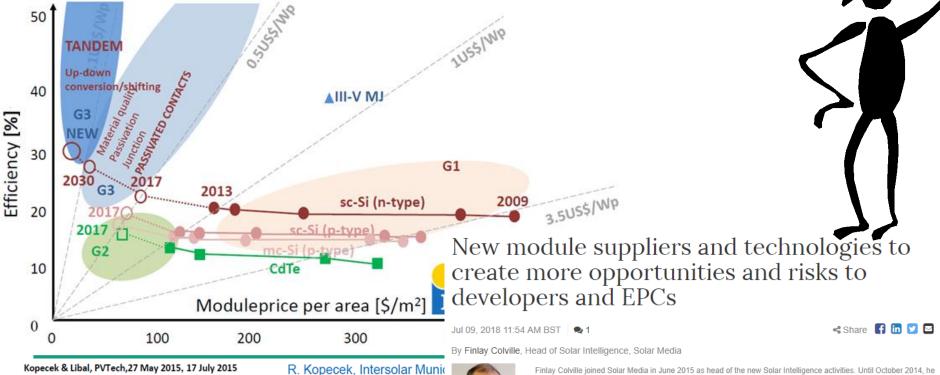

Expected PV LCOE for different specific yields. SourceITRPV March 2018.

CHILE

Assumed System Price (\$/W(DC)

Technology trends | Power density

- During 'high module' price *era* cheap, poly-Si was king for utility scale in Chile
- During 'low module' price *era* technology election is not that simple
- Low LCOEs in conjunction with lower weight of modules on the CapEx structure demand for high power density modules
 - mono/poly | PERX | n/p-type | Mono/Bi-facial | Half-Cut Cell | HJT | IBC | etc...


Kopecek & Libal, PVTech,27 May 2015, 17 July 2015 Limit for industrial c-Si solar cells reached in 2030: what next? R. Kopecek, Intersolar Munich, June 20, 2018

© Fraunhofer

Technology trends | Power density

- During 'high module' price era cheap, poly-Si was king for utility scale in Chile
- During 'low module' price *era* technology election is not that simple
- Low LCOEs in conjunction with lower weight of modules on the CapEx structure demand for high power density modules
 - mono/poly | PERX | n/p-type | Mono/Bi-facial | Half-Cut Cell | HJT | IBC | etc...

Limit for industrial c-Si solar cells reached in 2030; what next?

was vice president and head of solar at NPD Solarbuzz. Widely recognised as a leading authority on the solar PV industry, he has presented at almost every solar conference and event worldwide, and has authored hundreds of technical blogs and articles in the past few years. He holds a BSc in Physics and a PhD in nonlinear photonics

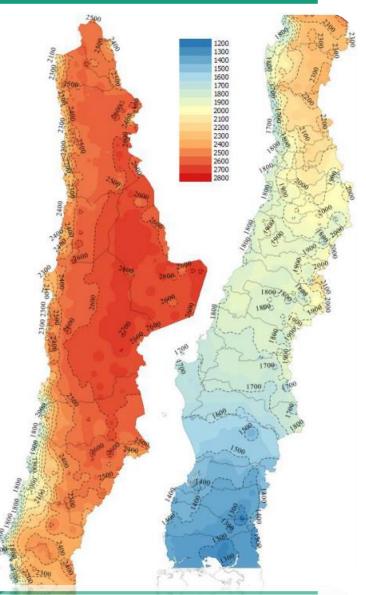
Technology trends | Advanced Services for Industry

- Advance performance measuring
 - On-site MPP evaluation of performance
 - Minutely IV curves & meteo data
 - On-site degradation & soiling studies
 - New technology analysis (i.e. bifacial, half-cut cell, etc...)
- Deployed platforms
 - Diego de Almagro Technology Platform
 - 12 IV channels & meteo
 - PSDA
 - 6 IV channels & meteo
- Why performing on-site analysis?
 - Better understanding of the site specific conditions for maximizing the financial yield of the solar PV asset and decreasing uncertainty

Solar Platform of Diego de Almagro. Operated by CSET. CSET.

Solar Platform of Atacama Desert. Ferrada.

Solar Platform at Santiago de Chile. Dictuc.



© Fraunhofer

Operating Conditions | Soiling

- Chile has one of the best solar irradiation resource (GHI and DNI) in the world
- Large temperature gradients pose degradation challenges to Bill of Materials (BoM). i.e. coatings
- High soiling rates add challenges to the optimal management of solar fields, <u>especially when plants</u> <u>operate on mature and competitive markets with</u> <u>seasonal varying price signals</u>
 - No PoC¹ PPAs (hourly/seasonal varying spot energy price)
 - No must run policies for NCRE² (curtailments <u>exist</u>)

GHI map of Chile in kWh/m²-year. CSET SolarGis Data.

Point of Connection

2) Non Conventional Renewable Energy

Soiling | Phenomenon | Physics

Soiling is the phenomenon of deposition, rebound, resuspension and accumulation in time of airborne particles over a surface (PV glass).

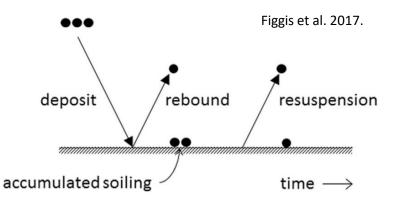


Fig. 1. Soiling is the net result of particle deposition, rebound, and resuspension. The mechanisms can be modeled and summed to describe dust accumulation over time.

Soiling | Phenomenon | Physics

Soiling is the phenomenon of deposition, rebound,
resuspension and accumulation in time of airborne
particles over a surface (PV glass).

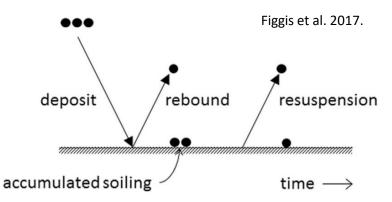
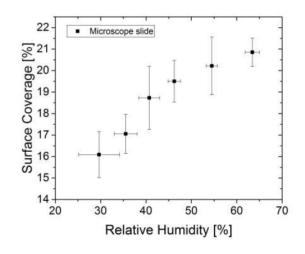
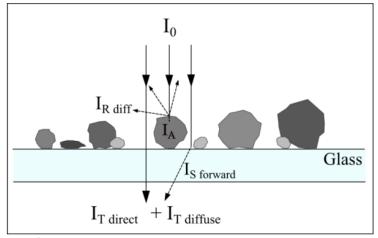



Fig. 1. Soiling is the net result of particle deposition, rebound, and resuspension. The mechanisms can be modeled and summed to describe dust accumulation over time.

Deposition, rebound and resuspension is a function of wind speed.

Accumulation, aglomeration and cementation
is a function of humidity and dust composition.

■ High relative humidity → increased adhesion due to capillary forces


Ilse et al. Fraunhofer CSP 2017.

Soiling | Phenomenon | Physics

Physics is hard to model and highly depends on the structural dynamics of the soiling with the surface (glass, coatings and water) and it's interaction with incoming light (direct and diffuse).

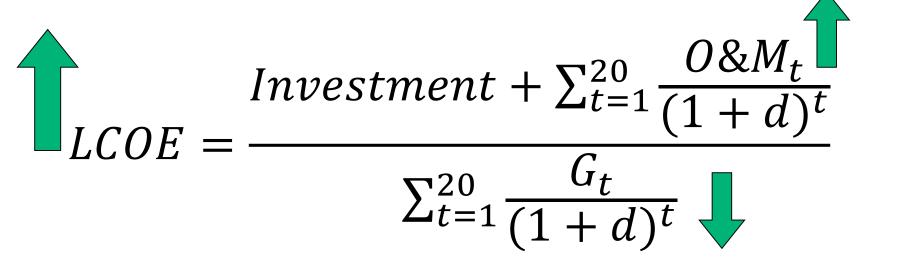
PV: Glass transparent cover

Wolfertstetter et al. 2018.

Soiling | Areas of study

- Physics
 - Deposition and interaction of materials, particles and weather
 - Weather data
- Chemistry
 - New composition of materials
 - Materials
- Economics
 - Economic impact & modeling of soiling

Soiling | Areas of study


- Physics
 - Deposition and interaction of materials, particles and weather
 - Weather data
 - Chemistry
 - New composition of materials
 - Materials
- Economics
 - Economic impact & modeling of soiling

Soiling | Soiling economics

- Levelized Cost of Electricity
 - Lower yield
 - Higher O&M cost
 - Non-linear LCOE increase

- Levelized Cost of Electricity
 - Lower yield (MWh/year)
 - Higher O&M cost (kWp/year)
 - Non-linear LCOE increase (USD/MWh)
 - Is soiling management easy to calculate?
 - Spot price or PPA at PoC (USD/MWh)
 - Cleaning type
 - Cleaning cost (USD/MWp)
 - Cleaning speed (MWp/day)
 - Soiling ratio (% cleanliness)
 - Soiling rate (%/day)

Non-linear economic impact of soiling has a non-marginal effect on LCOE

Сарех	1.0	USD/Wp
Орех	10.0	USD/kWp/Year
Years	20.0	Years
Discount rate	10.0%	%/Year
Degradation	0.50%	%/Year

	LCOE (USD/MWh)							
Δ Yield Δ Opex	0%	5%	10%	15%	20%			
0.0%	44.10	44.27	44.45	44.62	44.79			
-2.5%	45.23	45.41	45.59	45.76	45.94			
-5.0%	46.42	46.60	46.79	46.97	47.15			
-7.5%	47.68	47.86	48.05	48.24	48.42			
-10.0%	49.00	49.19	49.39	49.58	49.77			
-12.5%	50.40	50.60	50.80	50.99	51.19			
-15.0%	51.88	52.09	52.29	52.49	52.70			
-17.5%	53.46	53.66	53.87	54.08	54.29			
-20.0%	55.13	55.34	55.56	55.77	55.99			

% Var. LCOE	USD/kWp/Year	10.0	10.5	11.0	11.5	12.0
kWh/kWp	Δ Yield Δ Opex	0%	5%	10%	15%	20%
3,000	0.0%	0.0%	0.4%	0.8%	1.2%	1.6%
2,925	-2.5%	2.6%	3.0%	3.4%	3.8%	4.2%
2,850	-5.0%	5.3%	5.7%	6.1%	6.5%	6.9%
2,775	-7.5%	8.1%	8.5%	9.0%	9.4%	9.8%
2,700	-10.0%	11.1%	11.5%	12.0%	12.4%	12.9%
2,625	-12.5%	14.3%	14.7%	15.2%	15.6%	16.1%
2,550	-15.0%	17.6%	18.1%	18.6%	19.0%	19.5%
2,475	-17.5%	21.2%	21.7%	22.8%	22.6%	23.1%
2,400	-20.0%	25.0%	25.5%	26.0%	26.5%	27.0%

- Non-linear economic impact of soiling has a non-marginal effect on LCOE
- This effect is greater under low

CapEx scenarios

0.7	USD/Wp
10.0	USD/kWp/Year
20.0	Years
10.0%	%/Year
0.50%	%/Year
	10.0 20.0 10.0%

	LCOE (USD/MWh)								
Δ Yield Δ Opex	0%	5%	10%	15%	20%				
0.0%	31.91	32.08	32.25	32.43	32.60				
-2.5%	32.73	32.90	33.08	33.26	33.44				
-5.0%	33.59	33.77	33.95	34.13	34.32				
-7.5%	34.50	34.68	34.87	35.06	35.24				
-10.0%	35.45	35.65	35.84	36.03	36.22				
-12.5%	36.47	36.66	36.86	37.06	37.26				
-15.0%	37.54	37.74	37.95	38.15	38.35				
-17.5%	38.68	38.89	39.10	39.31	39.52				
-20.0%	39.89	40.10	40.32	40.53	40.75				

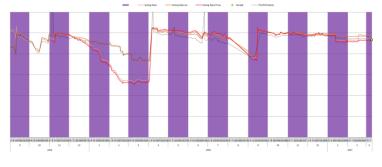
% Var. LCOE	USD/kWp/Year	10.0	10.5	11.0	11.5	12.0
kWh/kWp	Δ Yield Δ Opex	0%	5%	10%	15%	20%
3,000	0.0%	0.0%	0.5%	1.1%	1.6%	2.2%
2,925	-2.5%	2.6%	3.1%	3.7%	4.2%	4.8%
2,850	-5.0%	5.3%	5.8%	6.4%	7.0%	7.5%
2,775	-7.5%	8.1%	8.7%	9.3%	9.9%	10.5%
2,700	-10.0%	11.1%	11.7%	12.3%	12.9%	13.5%
2,625	-12.5%	14.3%	14.9%	15.5%	16.1%	16.8%
2,550	-15.0%	17.6%	18.3%	18.9%	19.6%	20.2%
2,475	-17.5%	21.2%	21.9%	22.5%	23.2%	23.8%
2,400	-20.0%	25.0%	25.7%	26.4%	27.0%	27.7%

- Non-linear economic impact of soiling has a non-marginal effect on LCOE
- This effect is greater under low
- CapEx scenarios
- Or low capital cost scenarios

Capex	0.7	USD/Wp
Орех	10.0	USD/kWp/Year
Years	20.0	Years
Discount rate	6.0%	%/Year
Degradation	0.50%	%/Year

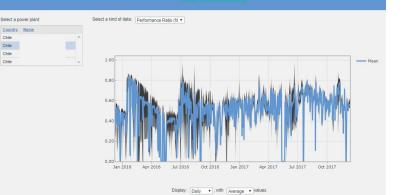
	LCOE (USD/MWh)								
Δ Yield Δ Opex	0%	5%	10%	15%	20%				
0.0%	24.71	24.88	25.06	25.23	25.41				
-2.5%	25.34	25.52	25.70	25.88	26.06				
-5.0%	26.01	26.19	26.38	26.56	26.74				
-7.5%	26.71	26.90	27.09	27.28	27.47				
-10.0%	27.46	27.65	27.84	28.04	28.23				
-12.5%	28.24	28.44	28.64	28.84	29.04				
-15.0%	29.07	29.28	29.48	29.68	29.89				
-17.5%	29.95	30.16	30.37	30.58	30.80				
-20.0%	30.89	31.11	31.32	31.54	31.76				

% Var. LCOE	USD/kWp/Year	10.0	10.5	11.0	11.5	12.0
kWh/kWp	Δ Yield Δ Opex	0%	5%	10%	15%	20%
3,000	0.0%	0.0%	0.7%	1.4%	2.1%	2.8%
2,925	-2.5%	2.6%	3.3%	4:0%	4.7%	5.5%
2,850	-5.0%	5.3%	6.0%	6.7%	7.5%	8.2%
2,775	-7.5%	8.1%	8.9%	9.6%	10.4%	11.2%
2,700	-10.0%	11.1%	11.9%	12.7%	13.5%	14.2%
2,625	-12.5%	14.3%	15.1%	15.9%	16.7%	17.5%
2,550	-15.0%	17.6%	18.5%	19.3%	20.1%	21.0%
2,475	-17.5%	21.2%	22.1%	22.8%	23.8%	24.6%
2,400	-20.0%	25.0%	25.9%	26.8%	27.6%	28.5%

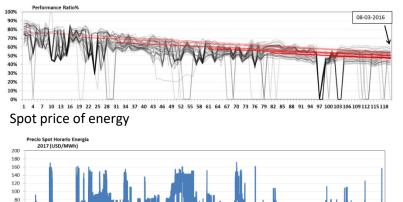


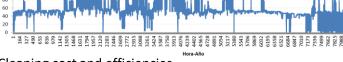
Solution | Proactive soiling management

- Offered service
 - Soiling analysis of the plant of interest
 - Optimal soiling management software for PV plants (365 days)
 - Inputs:
 - Real soiling curves(%/day per month)
 - Real expected production curve (MWh | 8760)
 - Spot pricing of electricity (or PPA) (US/MWh | 8760)
 - Costs of cleaning technologies(US/MWp | MWp/día)
 - Output
 - Optimal cleaning policy (day and type)
- Experience
 - Helping to manage the soiling of 500+ MWp of capacity in Chile
- Why using Optimal SOiling Management Model (OSOMM)?
 - Prices of electricity vary during the year and so do soiling conditions. Balancing the cost of cleaning and opportunity of increasing revenues through the production of electricity is a delicate exercise. With the OSOMM model you can perform that task and reach the optimal financial soiling levels for your solar portfolio



Fraunhofer Chile ©




Optimal management platform (SaaS)

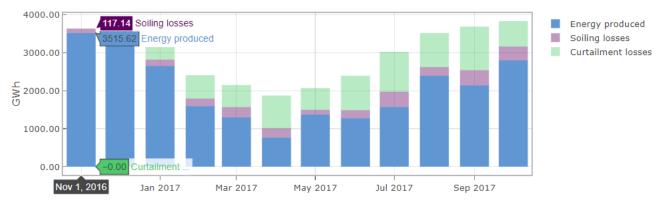
Historical Soiling | Seasonal expected soiling ranges

Historical Soiling | Short term soiling rates

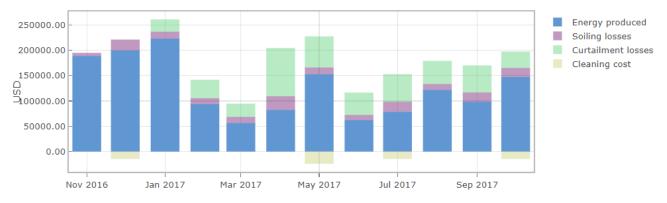
Cleaning cost and efficiencies

Fotovoltaicaufsc

Chack inputs before running optimiz MP Gap (%) Limit time (s): **Cute first day** Inicial cleaning state (%) 100 Cleaning day Total days Days to holys Window days Surger model Model to use Use ours Children J Soling scenario Heavy solling scan ortpliment klass


Management platform visualization

Start cleaning	Stop cleaning	Cleaning method	Cost (USD)	
2016-12-19	2017-01-04	slow	14.400	*
2017-05-01	2017-05-03	medium		
2017-07-17	2017-08-02	slow	14.400	
2017-10-02	2017-10-18	slow	14.400	-
			rraun	notei

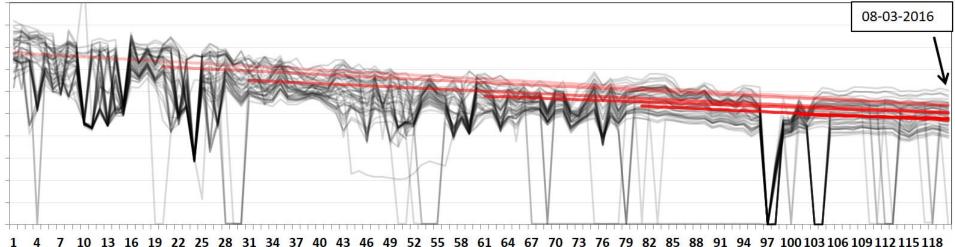

CHILE

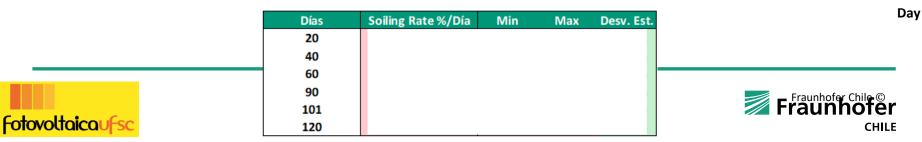
Optimized energy balance

Optimized revenues balance

Fotovoltaicaufsc

Cleaning Schedule


	Cost (USD)	Cleaning method	Stop cleaning	Start cleaning
*	14.400	slow	2017-01-04	2016-12-19
		medium	2017-05-03	2017-05-01
	14.400	slow	2017-08-02	2017-07-17
-	14.400	slow	2017-10-18	2017-10-02



What have we learned of soiling in Chile

- Soiling rates range from 0.05 to 0.8 %/day in Chile
 - Soiling rate is heavily site specific
- Periodicity of soiling
 - Seasonal but no TMY for soiling -> Static cleaning policy could yield sub-optimal financial yields for solar assets

Proactive and optimal management of solar field

1.4 MWp fixed tilt PV (1.15 DC/AC ratio with poly-Si), with hourly energy spot prices from year 2015, yields annual optimal energy losses of 12.4 %. Initial soiling ratio of 90 % and conservative cleaning costs of 1000 USD/MWp. Deterministic optimization (perfect information).

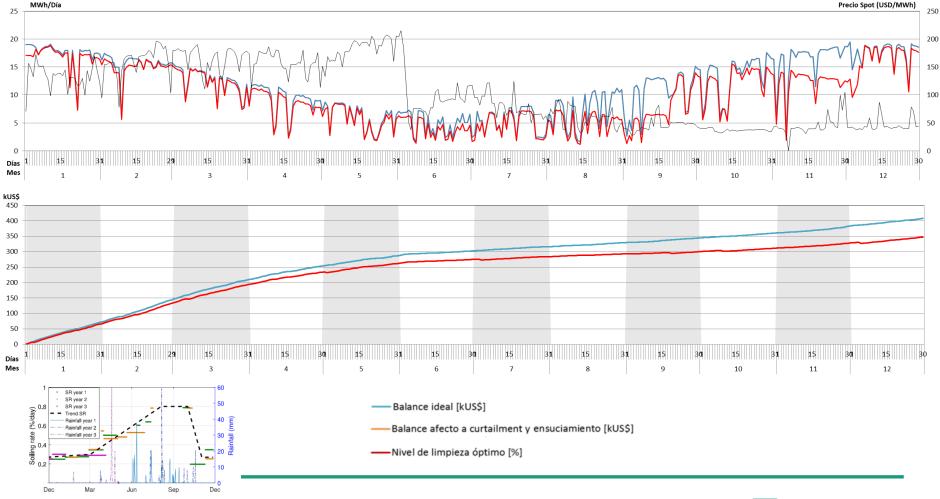


Fig. 5. Technology-averaged soiling rate for the period of study. To underline the seasonality of soiling phenomenon, the different years are superimposed. The horizontal length of each bar corresponds to the number of days without rain or cleaning events. An empirical trend is represented and rainfall for the different years is also plotted (right) y-axis). Besson et al. Fraunhofer CSET 2017.

Proactive and optimal management of solar field

1.4 MWp fixed tilt PV (1.15 DC/AC ratio with poly-Si), with hourly energy spot prices from year 2016, yields annual optimal energy losses of 12.4 %. Initial soiling ratio of 90 % and conservative cleaning costs of 1000 USD/MWp. Deterministic optimization (perfect information).

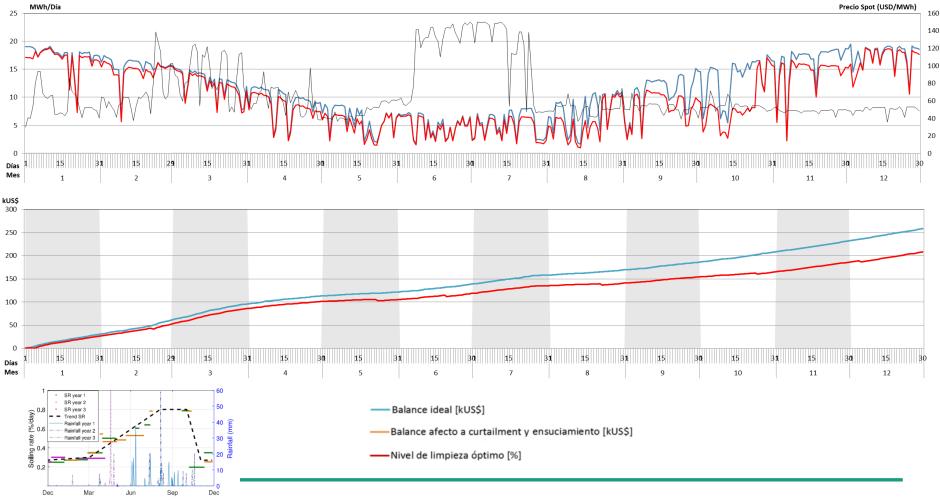


Fig. 5. Technology-averaged soling rate for the period of study. To underline the seasonality of soling phenomenon, the different years are superimposed. The horizontal length of each bar corresponds to the number of days without rain or cleaning events. An empirical trend is represented and rainfall for the different years is also plotted (right y-axis). Besson et al. Fraunhofer CSET 2017.

Proactive and optimal management of solar field

1.4 MWp fixed tilt PV (1.15 DC/AC ratio with poly-Si), with hourly energy spot prices from year 2017, yields annual optimal energy losses of 9.9 %. Initial soiling ratio of 90 % and conservative cleaning costs of 1000 USD/MWp. Deterministic optimization (perfect information).

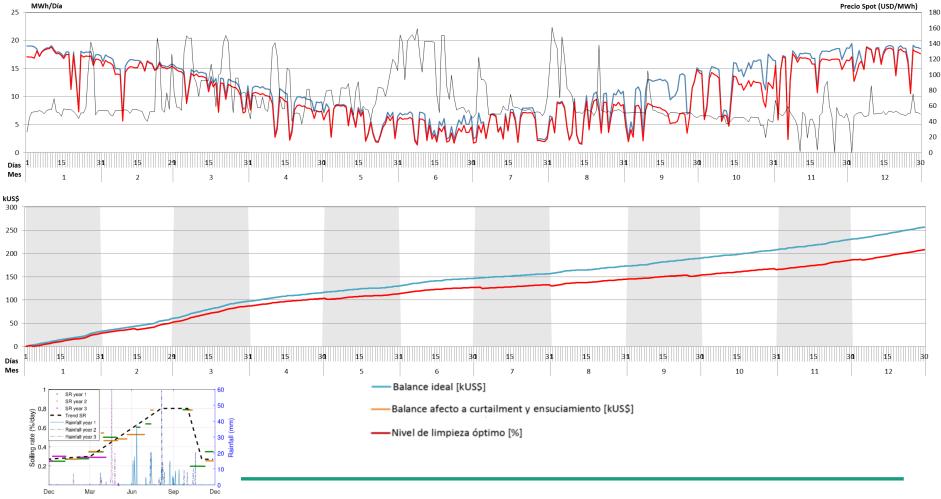
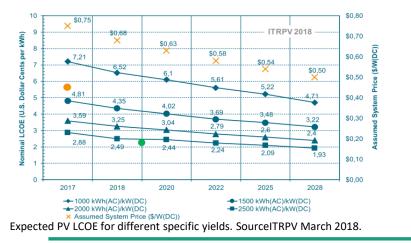


Fig. 5. Technology-averaged soiling rate for the period of study. To underline the seasonality of soiling phenomenon, the different years are superimposed. The horizontal length of each bar corresponds to the number of days without rain or cleaning events. An empirical trend is represented and rainfall for the different years is also plotted (right) y-axis). Besson et al. Fraunhofer CSET 2017.

Soiling | Recalling CapEx trend

Expected PV LCOE for different specific yields. SourceITRPV March 2018.



Soiling | Recalling CapEx trend

Extremely low CapEx scenarios are even more sensitive to soiling

Сарех	0.5	USD/Wp
Орех	10.0	USD/kWp/Year
Years	20.0	Years
Discount rate	6.0%	%/Year
Degradation	0.50%	%/Year

LCOE (USD/MWh)										
Δ Yield Δ Opex	Δ Yield Δ Opex 0% 5% 10% 15% 20%									
0.0%	18.64	18.82	18.99	19.17	19.34					
-2.5%	19.12	19.30	19.48	19.66	19.84					
-5.0%	19.63	19.81	19.99	20.17	20.36					
-7.5%	20.16	20.34	20.53	20.72	20.91					
-10.0%	20.72	20.91	21.10	21.30	21.49					
-12.5%	21.31	21.51	21.71	21.90	22.10					
-15.0%	21.93	22.14	22.34	22.55	22.75					
-17.5%	22.60	22.81	23.02	23.23	23.44					
-20.0%	23.31	23.52	23.74	23.96	24.18					

Fotovoltaicaufsc

% Var. LCOE	USD/kWp/Year	10.0	10.5	11.0	11.5	12.0
kWh/kWp	Δ Yield Δ Opex	0%	5%	10%	15%	20%
3,000	0.0%	0.0%	0.9%	1.9%	2.8%	3.7%
2,925	-2.5%	2.6%	3.5%	4.5%	5.4%	6.4%
2,850	-5.0%	5.3%	6.2%	7.2%	8.2%	9.2%
2,775	-7.5%	8.1%	9.1%	10.1%	11.1%	12.1%
2,700	-10.0%	11.1%	12.1%	13.2%	14.2%	15.3%
2,625	-12.5%	14.3%	15.4%	16.4%	17.5%	18.6%
2,550	-15.0%	17.6%	18.7%	19.8%	20.9%	22.0%
2,475	-17.5%	21.2%	22.3%	23.5%	24.6%	25.7%
2,400	-20.0%	25.0%	26.2%	27.3%	28.5%	29.7%

- Competitive landscape worldwide demands for low(er) LCOEs for PV
 - Given the relative weight of module cost on a full PV plant cost structure, large power density are the trend for further lowering LCOE
 - New module technologies arise, thus new questions have to be answered together with studies

- Competitive landscape worldwide demands for low(er) LCOEs for PV
 - Given the relative weight of module cost on a full PV plant cost structure, large power density are the trend for further lowering LCOE
 - New module technologies arise, thus new questions have to be answered together with studies
- Soiling is highly site specific and not all years are equal

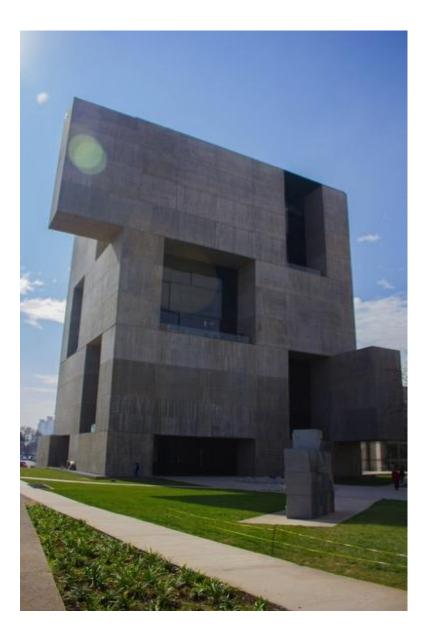
- Competitive landscape worldwide demands for low(er) LCOEs for PV
 - Given the relative weight of module cost on a full PV plant cost structure, large power density are the trend for further lowering LCOE
 - New module technologies arise, thus new questions have to be answered together with studies
- Soiling is highly site specific and not all years are equal
- Soiling impacts LCOE in a non-linear way
 - LCOE impact is greater under <u>low CapEx</u> or Cost of Capital scenarios

- Competitive landscape worldwide demands for low(er) LCOEs for PV
 - Given the relative weight of module cost on a full PV plant cost structure, large power density are the trend for further lowering LCOE
 - New module technologies arise, thus new questions have to be answered together with studies
- Soiling is highly site specific and not all years are equal
- Soiling impacts LCOE in a non-linear way
 - LCOE impact is greater under <u>low CapEx</u> or Cost of Capital scenarios
- Different price signal scenarios modify the optimal financial management of soiling
 - Static policies of cleaning yield sub-optimal results
 - Optimal management of soiling creates value for investors

- Competitive landscape worldwide demands for low(er) LCOEs for PV
 - Given the relative weight of module cost on a full PV plant cost structure, large power density are the trend for further lowering LCOE
 - New module technologies arise, thus new questions have to be answered together with studies
- Soiling is highly site specific and not all years are equal
- Soiling impacts LCOE in a non-linear way
 - LCOE impact is greater under <u>low CapEx</u> or Cost of Capital scenarios
- Different price signal scenarios modify the optimal financial management of soiling
 - Static policies of cleaning yield sub-optimal results
 - Optimal management of soiling creates value for investors
- On-site analysis meteo conditions and module technologies allows to decrease financial uncertainty and better technology pick

CHILE

Any Questions?


We have best solutions for your PV plant

Contact:

M.Sc. Gonzalo Ramírez-Sagner gonzalo.ramirez@fraunhofer.cl

Fraunhofer Chile Research Center for Solar Energy Technology

www.fraunhofer.cl

