LIFE-TIME ENERGY YIELD PREDICTIONS FOR UTILITY-SCALE PV POWER PLANTS

Dr.-Ing. Björn Müller Fraunhofer Institute for Solar Energy Systems ISE

www.ise.fraunhofer.de

Knowledge Exchange Seminar Photovoltaic Solar Generation, Florianopolis – Brazil

9th of November 2018

AGENDA

- Introduction
- Yield predictions for PV power plants
- Uncertainties of predicted yields
- Summary and conclusion

The Fraunhofer Gesellschaft

Connected Worldwide

Fraunhofer Institute for Solar Energy Systems ISE 12 Business Areas

- Silicon Photovoltaics
- III-V and Concentrator Photovoltaics
- Dye, Organic and Novel Solar Cells
 - Photovoltaic Modules and Power Plants
- Storage Technologies
- Hydrogen and Fuel Cell Technology

- Solar Thermal Technology
- Energy Efficient Buildings
- Energy Efficient Power Electronics
 - Zero-Emission Mobility
 - System Integration and Grids Electricity, Heat, Gas
- Energy System Analysis

Photovoltaic Modules and Power Plants Quality Assurance for utility scale PV

Planning and Design

- Solar resource and yield assessment
- Manufacturer quality benchmarking
- Module power and Energy rating

Implementation

- Module performance check
- Module reliability check
- Module material check

Commissioning

- Final acceptance test
- Initial performance and safety verification
- PV plant certification

Operation

- Continuous long-term performance reporting
- Failure analyzes and reporting
- Forecasting

5

Fraunhofer ISE and Fotovoltaica / UFSC Alexander von Humbold Foundation: Research Group Linkage Programme

This scientific visit of Björn Müller to Fotovoltaica/UFSC is being sponsored by an Alexander von Humboldt Foundation Research Group Linkage Programme Research Grant

http://www.humbold-foundation.de

Yield Predictions for PV Power Plants

Yield assessment as basis for the financial assessment

independent, accurate simulation

🛸 Fraunhofer

detailed documentation with validated results

Calculation step	Uncertainty*	Value	Unit	Gain/Loss**	PR***
Irradiation global horizontal	5.0%	1550	kWh/m²		
Irradiation on tilted surface	2.5%	1821	kWh/m²	17.5%	100.0%
Shading					
External Shading	0.5%	1803	kWh/m²	-1.0%	99.0%
Internal Shading	2.0%	1765	kWh/m²	-2.1%	96.9%
Soiling	1.0%	1739	kWh/m²	-1.5%	95.5%
Reflection losses	0.5%	1695	kWh/m²	-2.5%	93.1%
Deviation from STC operation of modules					
Spectral losses	1.0%	1661	kWh/kWp	-2.0%	91.2%
Irradiation-dependent losses	1.0%	1682	kWh/kWp	1.3%	92.4%
Temperature-dependent losses	1.0%	1634	kWh/kWp	-2.9%	89.7%
Interconnection losses (mismatch)	0.5%	1602	kWh/kWp	-2.0%	88.0%
Cabling losses	0.5%	1579	kWh/kWp	-1.4%	86.7%
Inverter losses	1.5%	1538	kWh/kWp	-2.6%	84.5%
Power limitation of inverter	0.5%	1538	kWh/kWp	0.0%	84.5%
Transformer	0.0%	1538	kWh/kWp	0.0%	84.5%
Total	6.5%	1538	kWh/kWp		84.5%

* Uncertainties are related to single standard deviation

** Gain/Los : energetic Gain / Loss according to the step of calculation of the simulation *** PR: Performance Ratio

7

Yield Predictions for PV Power Plants Procedure

- Assessment of the solar resource and other meteorological quantities
 - Derive meteorological data from the past (reference period)
 - Calculate irradiance in plane of array using a conversion model
- Simulation of the energy output for the PV system under consideration
 - Based on meteorological data and specifications of the PV system
 - Set of models, methods and parameters
- Long-term (future) changes in energy yield within the prediction period
 - Power and performance changes of the PV system
 - Changes of meteorological quantities

Yield Predictions for PV Power Plants Calculation Steps

Horizontal irradiation (history) Horizontal irradiation (future) Diffuse fraction & conversion into module plane Partial shading (& inverter behavior) Soiling losses **Reflection** losses Spectral effects Product specifications vs. actual properties Dependency on irradiance level Dependency on temperature Mismatch losses DC + AC cable losses Inverter efficiency and limitations Transformer losses System degradation

Uncertainties of Predicted Yields

Monte Carlo Simulation

Why Monte Carlo?

- To consider the possibly asymmetric uncertainties of all simulation steps
- Because it's (quite) easy to implement

Advantages

- Easy to use non-normal uncertainty distributions
- Consideration of uncertainties in individual years due to inter-annual variation
- Results can be directly used for further calculations e.g. financial models

Prediction without long-term changes

Yield / Yield in the Reference Period [%] Prediction with interannual variations Predicted Yield P10 P50 P90 Prediction Period [Years]

Comparison with measured yields

Uncertainties of Predicted Yields

Example: Annual yields as input for financial model

Uncetrainties of after tax internal rates of return for an "All Equity Partnership Flip" model in the US

Source:

B. Müller, B. Xu-Sigurdson, P.Bostock, B. Farnung

"The Influence of Interannual Variation and Long-term Effects of PV Energy Yields on Financial Models", 7th WCPEC, Hawaii, 2018

Summary and Conclusion

Independent high quality life-time energy yield predictions

- are a sound basis for investments in PV power plants
- can achieve quite low uncertainties
- Monte Carlo based uncertainty estimation
 - is able to reflect "real" (measured) deviations between prediction and measurement
 - can consider asymmetric uncertainty distributions e.g. for degradation rates
 - can be directly used as input for financial models

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Björn Müller

www.ise.fraunhofer.de

bjoern.mueller@ise.fraunhofer.de

